Effect of sulfate group on sulfated polysaccharides-induced improvement of metabolic syndrome and gut microbiota dysbiosis in high fat diet-fed mice

被引:27
作者
Wu, Shuang [1 ]
Liu, Yili [1 ]
Jiang, Pingrui [1 ]
Xu, Yuxin [1 ]
Zheng, Weiyun [1 ]
Song, Shuang [1 ,2 ]
Ai, Chunqing [1 ,2 ]
机构
[1] Dalian Polytech Univ, Natl Engn Res Ctr Seafood, Sch Food Sci & Technol, Dalian 116034, Peoples R China
[2] Dalian Polytech Univ, Natl & Local Joint Engn Lab Marine Bioact Polysac, Dalian 116034, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfated polysaccharides; Gut microbiota; Metabolic syndrome; PACIFIC ABALONE; REDUCES OBESITY; ANTIOXIDANT; RESVERATROL; HOMEOSTASIS; CAPACITY; PROTEIN; LIVER; RATS;
D O I
10.1016/j.ijbiomac.2020.08.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sulfated polysaccharides were shown to benefit metabolic syndrome (MS) and gut microbiota, but the contribution of sulfate group remains unclear. In this study, sulfated polysaccharides from pacific abalone (AGSP) and its desulfated product (D-AGSP) were prepared, and the contribution of sulfate group was analyzed via in vitro and in vivo models. The result showed that sulfate group had no obvious effect on the reaction of AGSP with RAW 264.7 cells, but it affected the growth properties of gut microbes that able to utilize AGSP. The mice experiment showed that D-AGSP reduced weight gain, fat accumulation and lipid metabolism disorder in HFD-fed mice as well as AGSP, and no differences between them were found. Sequencing analysis showed that sulfate group influenced AGSP-induced alterations of the gut microbiota at higher taxonomic levels, some of which had close correlation with the improvement of physiological index. These results implied that sulfate group may partially determine the activities of polysaccharides via gut microbiota-mediated pathway, but the exact mechanisms need further research. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:2062 / 2072
页数:11
相关论文
共 50 条
  • [21] Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats
    Li, Lu
    Guo, Wei-Ling
    Zhang, Wen
    Xu, Jia-Xin
    Qian, Min
    Bai, Wei-Dong
    Zhang, Yan-Yan
    Rao, Ping-Fan
    Ni, Li
    Lv, Xu-Cong
    FOOD & FUNCTION, 2019, 10 (05) : 2560 - 2572
  • [22] Bletilla striata oligosaccharides improve metabolic syndrome through modulation of gut microbiota and intestinal metabolites in high fat diet-fed mice
    Hu, Baifei
    Ye, Cheng
    Leung, Elaine Lai-Han
    Zhu, Lin
    Hu, Haiming
    Zhang, Zhigang
    Zheng, Junping
    Liu, Hongtao
    PHARMACOLOGICAL RESEARCH, 2020, 159
  • [23] Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice
    Han, Hui
    Wang, Mengyu
    Zhong, Ruqing
    Yi, Bao
    Schroyen, Martine
    Zhang, Hongfu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [24] Curcumin improves insulin sensitivity in high-fat diet-fed mice through gut microbiota
    Zhong, Yue
    Xiao, Yang
    Gao, Jing
    Zheng, Zhaozheng
    Zhang, Ziheng
    Yao, Lu
    Li, Dongmin
    NUTRITION & METABOLISM, 2022, 19 (01)
  • [25] Improvement on metabolic syndrome in high fat diet-induced obese mice through modulation of gut microbiota by sangguayin decoction
    Zheng, Junping
    Zhang, Jing
    Guo, Yanlei
    Cui, Hairong
    Lin, Aizhen
    Hu, Baifei
    Gao, Qinghua
    Chen, Yunzhong
    Liu, Hongtao
    JOURNAL OF ETHNOPHARMACOLOGY, 2020, 246
  • [26] Anti-obesity and Gut Microbiota Modulation Effect of Astragalus Polysaccharides Combined with Berberine on High-Fat Diet-Fed Obese Mice
    Yue, Shi-jun
    Wang, Wen-xiao
    Zhang, Lei
    Liu, Juan
    Feng, Wu-wen
    Gao, Huan
    Tang, Yu-ping
    Yan, Dan
    CHINESE JOURNAL OF INTEGRATIVE MEDICINE, 2023, 29 (07) : 617 - 625
  • [27] Natto alleviates hyperlipidemia in high-fat diet-fed mice by modulating the composition and metabolic function of gut microbiota
    Shang, Le -Yuan
    Zhang, Shuo
    Zhang, Min
    Sun, Xiao-Dong
    Wang, Qi
    Liu, Yu-Jie
    Zhao, Yan-Ni
    Zhao, Mei
    Wang, Peng-Jiao
    Gao, Xiu-Li
    JOURNAL OF FUNCTIONAL FOODS, 2024, 112
  • [28] Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice
    Higashimura, Yasuki
    Naito, Yuji
    Takagi, Tomohisa
    Uchiyama, Kazuhiko
    Mizushima, Katsura
    Ushiroda, Chihiro
    Ohnogi, Hiromu
    Kudo, Yoko
    Yasui, Madoka
    Inui, Seina
    Hisada, Takayoshi
    Honda, Akira
    Matsuzaki, Yasushi
    Yoshikawa, Toshikazu
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2016, 310 (06): : G367 - G375
  • [29] Anti-obesity and Gut Microbiota Modulation Effect of Astragalus Polysaccharides Combined with Berberine on High-Fat Diet-Fed Obese Mice
    Shi-jun Yue
    Wen-xiao Wang
    Lei Zhang
    Juan Liu
    Wu-wen Feng
    Huan Gao
    Yu-ping Tang
    Dan Yan
    Chinese Journal of Integrative Medicine, 2023, 29 : 617 - 625
  • [30] Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice
    Li, Tiange
    Gao, Jing
    Du, Min
    Mao, Xueying
    JOURNAL OF FUNCTIONAL FOODS, 2018, 47 : 56 - 65