Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil

被引:11
作者
Chen, Yating [2 ]
Li, Xiaomin [3 ,4 ,7 ]
Liu, Tongxu [1 ]
Li, Fangbai [1 ,6 ]
Sun, Weimin [1 ]
Young, Lily Y. [5 ]
Huang, Weilin [5 ]
机构
[1] Guangdong Acad Sci, Inst Eco Environm & Soil Sci, Natl Reg Joint Engn Res Ctr Soil Pollut Control &, Guangdong Key Lab Integrated Agro Environm Pollut, Guangzhou 510650, Peoples R China
[2] Hong Kong Polytech Univ, Sichuan Univ, Inst Disaster Management & Reconstruct, Chengdu 610207, Peoples R China
[3] South China Normal Univ, SCNU Environm Res Inst, Guangdong Prov Key Lab Chem Pollut & Environm Safe, Guangzhou 510006, Peoples R China
[4] South China Normal Univ, MOE Key Lab Theoret Chem Environm, Guangzhou 510006, Peoples R China
[5] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA
[6] Guangdong Acad Sci, Inst Eco Environm & Soil Sci, 808 Tianyuan Rd, Guangzhou 510650, Peoples R China
[7] South China Normal Univ, SCNU Environm Res Inst, 378 Waihuan West Rd,Univ Town, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Microaerophilic Fe(II)-oxidizing bacteria; Iron oxidase Cyc2; Calvin-Benson-Bassham cycle; Paddy soil; Metagenomics; IRON-OXIDIZING BACTERIA; AMMONIA OXIDATION; AS(III) OXIDATION; GENOME SEQUENCE; SP NOV; MICROORGANISMS; FIXATION; PH; BIOGEOCHEMISTRY; RHIZOSPHERE;
D O I
10.1016/j.scitotenv.2022.158068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbially mediated Fe(II) oxidation is prevalent and thought to be central to many biogeochemical processes in paddy soils. However, we have limited insights into the Fe(II) oxidation process in paddy fields, considered the world's largest engineered wetland, where microoxic conditions are ubiquitous. In this study, microaerophilic Fe(II) oxidizing bacteria (FeOB) from paddy soil were enriched in gradient tubes with FeS, FeCO3, and Fe3(PO4)2 as iron sources to investigate their capacity for Fe(II) oxidation and carbon assimilation. Results showed that the highest rate of Fe(II) oxidation (k = 0.836 mM d-1) was obtained in the FeCO3 tubes, and cells grown in the Fe3(PO4)2 tubes yielded max-imum assimilation amounts of 13C-NaHCO3 of 1.74% on Day 15. Amorphous Fe(III) oxides were found in all the cell bands with iron substrates as a result of microbial Fe(II) oxidation. Metagenomics analysis of the enriched microbes targeted genes encoding iron oxidase Cyc2, oxygen-reducing terminal oxidase, and ribulose-bisphosphate carboxylase, with results indicated that the potential Fe(II) oxidizers include nitrate-reducing FeOB (Dechloromonas and Thiobacillus), Curvibacter, and Magnetospirillum. By combining cultivation-dependent and metagenomic approaches, our results found a number of FeOB from paddy soil under microoxic conditions, which provide insight into the com-plex biogeochemical interactions of iron and carbon within paddy fields. The contribution of the FeOB to the element cycling in rice-growing regions deserves further investigation.
引用
收藏
页数:10
相关论文
共 89 条
[1]  
Absher M., 1973, Tissue Culture, P395, DOI DOI 10.1016/B978-0-12-427150-0.50098-X
[2]   Enzymatic Characterization and In Vivo Function of Five Terminal Oxidases in Pseudomonas aeruginosa [J].
Arai, Hiroyuki ;
Kawakami, Takuro ;
Osamura, Tatsuya ;
Hirai, Takehiro ;
Sakai, Yoshiaki ;
Ishii, Masaharu .
JOURNAL OF BACTERIOLOGY, 2014, 196 (24) :4206-4215
[3]   Multiple Rubisco forms in proteobacteria:: their functional significance in relation to CO2 acquisition by the CBB cycle [J].
Badger, Murray Ronald ;
Bek, Emily Jane .
JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (07) :1525-1541
[4]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[5]   New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph [J].
Barco, Roman A. ;
Emerson, David ;
Sylvan, Jason B. ;
Orcutt, Beth N. ;
Meyers, Myrna E. Jacobson ;
Ramirez, Gustavo A. ;
Zhong, John D. ;
Edwards, Katrina J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (17) :5927-5937
[6]   Respiration of Escherichia coli Can Be Fully Uncoupled via the Nonelectrogenic Terminal Cytochrome bd-II Oxidase [J].
Bekker, M. ;
de Vries, S. ;
Ter Beek, A. ;
Hellingwerf, K. J. ;
de Mattos, M. J. Teixeira .
JOURNAL OF BACTERIOLOGY, 2009, 191 (17) :5510-5517
[7]   The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans [J].
Beller, HR ;
Chain, PSG ;
Letain, TE ;
Chakicherla, A ;
Larimer, FW ;
Richardson, PM ;
Coleman, MA ;
Wood, AP ;
Kelly, DP .
JOURNAL OF BACTERIOLOGY, 2006, 188 (04) :1473-1488
[8]   Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria [J].
Benz, M ;
Brune, A ;
Schink, B .
ARCHIVES OF MICROBIOLOGY, 1998, 169 (02) :159-165
[9]   Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways [J].
Berg, Ivan A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (06) :1925-1936
[10]   Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications [J].
Bryce, Casey ;
Blackwell, Nia ;
Schmidt, Caroline ;
Otte, Julia ;
Huang, Yu-Ming ;
Kleindienst, Sara ;
Tomaszewski, Elizabeth ;
Schad, Manuel ;
Warter, Viola ;
Peng, Chao ;
Byrne, James M. ;
Kappler, Andreas .
ENVIRONMENTAL MICROBIOLOGY, 2018, 20 (10) :3462-3483