population dynamics;
epidemic;
discrete-time;
cellular automaton;
D O I:
10.1016/j.physa.2003.12.035
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We investigate possible extensions of the susceptible-infective-removed (SIR) epidemic model. We show that there exists a large class of functions representing interaction between the susceptible and infective populations for which the model has a realistic behaviour and preserves the essential features of the classical SIR model. We also present a new discretisation of the SIR model which has the advantage of possessing a conserved quantity, thus making possible the estimation of the non-infected population at the end of the epidemic. A cellular automaton SIR is also constructed on the basis of the discrete-time system. (C) 2003 Elsevier B.V. All rights reserved.
机构:
Swiss Fed Inst Technol, Dept Mat, Polymer Phys, Leopold Ruzicka Weg 4, CH-8093 Zurich, SwitzerlandSwiss Fed Inst Technol, Dept Mat, Polymer Phys, Leopold Ruzicka Weg 4, CH-8093 Zurich, Switzerland
Kroeger, Martin
Turkyilmazoglu, Mustafa
论文数: 0引用数: 0
h-index: 0
机构:
Hacettepe Univ, Dept Math, TR-06532 Ankara, Turkey
China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, TaiwanSwiss Fed Inst Technol, Dept Mat, Polymer Phys, Leopold Ruzicka Weg 4, CH-8093 Zurich, Switzerland
机构:
Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
Heilongjiang Inst Sci & Technol, Coll Sci, Harbin 150027, Peoples R ChinaHarbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
Zhang, Xianghua
Wang, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaHarbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China