Extending the SIR epidemic model

被引:111
|
作者
Satsuma, J
Willox, R
Ramani, A
Grammaticos, B
Carstea, AS
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Ecole Polytech, CNRS, UMR 7644, F-91128 Palaiseau, France
[3] Univ Paris 07, GMPIB, F-75251 Paris, France
[4] Inst Phys & Nucl Engn, Bucharest, Romania
基金
日本学术振兴会;
关键词
population dynamics; epidemic; discrete-time; cellular automaton;
D O I
10.1016/j.physa.2003.12.035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate possible extensions of the susceptible-infective-removed (SIR) epidemic model. We show that there exists a large class of functions representing interaction between the susceptible and infective populations for which the model has a realistic behaviour and preserves the essential features of the classical SIR model. We also present a new discretisation of the SIR model which has the advantage of possessing a conserved quantity, thus making possible the estimation of the non-infected population at the end of the epidemic. A cellular automaton SIR is also constructed on the basis of the discrete-time system. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 375
页数:7
相关论文
共 50 条