One-step preparation of pomegranate-shaped Sn/SnOx/nanocarbon composites for fabricating ultrafast-charging/long-life lithium-ion battery

被引:15
作者
Cao, Mengdi [1 ]
Zhang, Man [1 ]
Xing, Lili [1 ]
Wang, Qiang [1 ]
Xue, Xin-Yu [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoparticles; Anode Lithium-ion battery; Solvothermal method; LONG-LIFE; ANODE MATERIALS; HIGH-CAPACITY; NANO-IONICS; STORAGE; SNO2; NANOCOMPOSITES; PERFORMANCE; ELECTRODES; GRAPHENE;
D O I
10.1016/j.jallcom.2016.09.306
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pomegranate-shaped Sn/SnO(x/)nanocarbon composites are fabricated via a simple one-step solvothermal method. The Sn and SnOx nanoparticles are uniformly embedded in the sheet-like nanocarbon membranes. As the anode of lithium-ion battery, the pomegranate-shaped Sn/SnO(x/)nanocarbon composites exhibit ultrafast-charging and long-life performance. At super high current rate of 10 C, 15 C and 20 C (the charging process is shortened to merely 6, 4 and 3 min, respectively), the reversible capacity of pomegranate-shaped Sn/SnO(x/)nanocarbon composites is 545, 467 and 421 mAh g(-1), respectively. After 2000 cycles, the capacity can still maintain at 192, 139 and 101 mAh g-1 at 10 C, 15 C and 20 C rate, respectively. Even after 5000 cycles at 15 C rate, the discharge capacity can still keep at 135 mAh g-1. Such superior performance can be attributed to the unique structure, good electronic conductivity, short paths for lithium diffusion and interfacial charging mechanism. The present results indicate a new way to produce pomegranate-shaped metal/metal-oxide/nanocarbon composites with ultrafast-charging/long-life lithium-storage performance. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 47 条
[1]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[2]   Nanostructured Li ion insertion electrodes. 1. Discussion on fast transport and short path for ion diffusion [J].
Bueno, PR ;
Leite, ER .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (34) :8868-8877
[3]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[4]   Li-storage of Fe3O4/C composite prepared by one-step carbothermal reduction method [J].
Das, B. ;
Reddy, M. V. ;
Chowdari, B. V. R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 565 :90-96
[5]   Synthesis and characterization of single-crystalline α-MoO3 nanofibers for enhanced Li-ion intercalation applications [J].
Dewangan, Khemchand ;
Sinha, Nupur Nikkan ;
Sharma, Prashant K. ;
Pandey, Avinash C. ;
Munichandraiah, N. ;
Gajbhiye, N. S. .
CRYSTENGCOMM, 2011, 13 (03) :927-933
[6]   Preparation of Carbon-Coated NiCo2O4@SnO2 Hetero-nanostructures and Their Reversible Lithium Storage Properties [J].
Gao, Guoxin ;
Wu, Hao Bin ;
Ding, Shujiang ;
Lou, Xiong Wen .
SMALL, 2015, 11 (04) :432-436
[7]   Hierarchical core-shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries [J].
Gu, Xin ;
Chen, Liang ;
Liu, Shuo ;
Xu, Huayun ;
Yang, Jian ;
Qian, Yitai .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (10) :3439-3444
[8]   High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co3O4 as anode materials [J].
He, Junkai ;
Liu, Ying ;
Meng, Yongtao ;
Sun, Xiangcheng ;
Biswas, Sourav ;
Shen, Min ;
Luo, Zhu ;
Miao, Ran ;
Zhang, Lichun ;
Mustain, William E. ;
Suib, Steven L. .
RSC ADVANCES, 2016, 6 (29) :24320-24330
[9]   A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery [J].
Hu, Shuang ;
Song, Yanfang ;
Yuan, Shouyi ;
Liu, Haimei ;
Xu, Qunjie ;
Wang, Yonggang ;
Wang, Cong-Xiao ;
Xia, Yong-Yao .
JOURNAL OF POWER SOURCES, 2016, 303 :333-339
[10]   Nanocrystallinity effects in lithium battery materials - Aspects of nano-ionics. Part IV [J].
Jamnik, J ;
Maier, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (23) :5215-5220