Symmetries and exact solutions of the BPS Skyrme model

被引:17
作者
Adam, C. [1 ,2 ]
Fosco, C. D. [3 ,4 ]
Queiruga, J. M. [1 ,2 ]
Sanchez-Guillen, J. [1 ,2 ]
Wereszczynski, A. [5 ]
机构
[1] Univ Santiago de Compostela, Dept Fis Particulas, E-15782 Santiago De Compostela, Spain
[2] IGFAE, E-15782 Santiago De Compostela, Spain
[3] Univ Nacl Cuyo, Ctr Atom Bariloche, Comis Nacl Energia Atom, San Carlos De Bariloche, Rio Negro, Argentina
[4] Univ Nacl Cuyo, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina
[5] Jagiellonian Univ, Inst Phys, Krakow, Poland
关键词
MASS;
D O I
10.1088/1751-8113/46/13/135401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The BPS Skyrme model is a specific subclass of Skyrme-type field theories which possesses both a BPS bound and infinitely many soliton solutions (skyrmions) saturating that bound. A related property, the existence of a large group of symmetry transformations, allows for solutions of rather general shapes, which is in contrast to the situation for the original Skyrme model, where soliton solutions usually have some fixed shapes. We study here the classical symmetries of the BPS Skyrme model, applying them to construct soliton solutions with some prescribed shapes, which constitutes a further step to understand the similarities and differences with the original Skyrme model.
引用
收藏
页数:13
相关论文
共 22 条
[11]   Tau-functions and dressing transformations for zero-curvature affine integrable equations [J].
Ferreira, LA ;
Miramontes, JL ;
Guillen, JS .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :882-901
[12]   Multi-Skyrmion solutions for the sixth order Skyrme model [J].
Floratos, I ;
Piette, B .
PHYSICAL REVIEW D, 2001, 64 (04)
[13]   MODEL WITH SOLITONS IN (2+1) DIMENSIONS [J].
IZQUIERDO, JM ;
RASHID, MS ;
PIETTE, B ;
ZAKRZEWSKI, WJ .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 53 (01) :177-182
[14]   A MODIFIED SKYRMION [J].
JACKSON, A ;
JACKSON, AD ;
GOLDHABER, AS ;
BROWN, GE ;
CASTILLEJO, LC .
PHYSICS LETTERS B, 1985, 154 (2-3) :101-106
[15]   Mass splittings of nuclear isotopes in chiral soliton approach [J].
Kopeliovich, V. B. ;
Shunderuk, A. M. ;
Matushko, G. K. .
PHYSICS OF ATOMIC NUCLEI, 2006, 69 (01) :120-132
[16]  
Manton N., 2007, Topological Solitons
[17]   GENERALIZED HAMILTONIAN DYNAMICS [J].
NAMBU, Y .
PHYSICAL REVIEW D, 1973, 7 (08) :2405-2412
[18]   KINKS AND DIRAC EQUATION [J].
SKYRME, THR .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (08) :1735-&
[19]   Compactons and semi-compactons in the extreme baby Skyrme model [J].
Speight, J. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (40)
[20]   Skyrmions in a truncated BPS theory [J].
Sutcliffe, Paul .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (04)