A construction of unimodular equiangular tight frames from resolvable Steiner systems

被引:2
作者
Jasper, John [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
来源
WAVELETS AND SPARSITY XV | 2013年 / 8858卷
关键词
tight frames; equiangular; Hadamard matrices; Steiner systems; resolvable;
D O I
10.1117/12.2024182
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An equiangular tight frame (ETF) is an M x N matrix which has orthogonal equal norm rows, equal norm columns, and the inner products of all pairs of columns have the same modulus. In this paper we study ETFs in which all of the entries are unimodular, and in particular pth roots of unity. A new construction of unimodular ETFs based on resolvable Steiner systems is presented. This construction gives many new examples of unimodular ETFs. In particular, an new infinite class of ETFs with entries in {1, -1} is presented.
引用
收藏
页数:8
相关论文
共 7 条
  • [1] Apostol T., 1976, UNDERGRADUATE TEXTS
  • [2] Ding C., 2007, IEEE T INFORM THEORY
  • [3] Steiner equiangular tight frames
    Fickus, Matthew
    Mixon, Dustin G.
    Tremain, Janet C.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1014 - 1027
  • [4] Jasper J., PREPRINT
  • [5] EQUIANGULAR LINES
    LEMMENS, PWH
    SEIDEL, JJ
    [J]. JOURNAL OF ALGEBRA, 1973, 24 (03) : 494 - 512
  • [6] Ray-Chaudhuri D. K., 1973, SURV COMB THEORY, P361
  • [7] On the existence of equiangular tight frames
    Sustik, Matyas A.
    Tropp, Joel A.
    Dhillon, Inderjit S.
    Heath, Robert W., Jr.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 619 - 635