Human cytosolic 3α-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3β-hydroxysteroid dehydrogenase activity -: Implications for steroid hormone metabolism and action

被引:239
作者
Steckelbroeck, S [1 ]
Jin, Y [1 ]
Gopishetty, S [1 ]
Oyesanmi, B [1 ]
Penning, TM [1 ]
机构
[1] Univ Penn, Sch Med, Dept Pharmacol, Philadelphia, PA 19104 USA
关键词
D O I
10.1074/jbc.M313308200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The source of NADPH-dependent cytosolic 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity is unknown to date. This important reaction leads e. g. to the reduction of the potent androgen 5alpha-dihydrotestosterone (DHT) into inactive 3beta-androstanediol (3beta-Diol). Four human cytosolic aldo-keto reductases (AKR1C1 AKR1C4) are known to act as non-positional-specific 3alpha- / 17beta- /20alpha-HSDs. We now demonstrate that AKR1Cs catalyze the reduction of DHT into both 3alpha- and 3beta-Diol ( established by H-1 NMR spectroscopy). The rates of 3alpha-versus 3beta-Diol formation varied significantly among the isoforms, but with each enzyme both activities were equally inhibited by the nonsteroidal anti-inflammatory drug flufenamic acid. In vitro, AKR1Cs also expressed substantial 3alpha[17beta]-hydroxysteroid oxidase activity with 3alpha-Diol as the substrate. However, in contrast to the 3-ketosteroid reductase activity of the enzymes, their hydroxysteroid oxidase activity was potently inhibited by low micromolar concentrations of the opposing cofactor ( NADPH). This indicates that in vivo all AKR1Cs will preferentially work as reductases. Human hepatoma (HepG2) cells (which lack 3beta-HSD/Delta(5-4) ketosteroid isomerase mRNA expression, but express AKR1C1 - AKR1C3) were able to convert DHT into 3alpha- and 3beta-Diol. This conversion was inhibited by flufenamic acid establishing the in vivo significance of the 3alpha/ 3beta-HSD activities of the AKR1C enzymes. Molecular docking simulations using available crystal structures of AKR1C1 and AKR1C2 demonstrated how 3alpha/3beta-HSD activities are achieved. The observation that AKR1Cs are a source of 3beta-tetrahydrosteroids is of physiological significance because: (i) the formation of 3beta-Diol ( in contrast to 3alpha-Diol) is virtually irreversible, (ii) 3beta-Diol is a pro-apoptotic ligand for estrogen receptor beta, and (iii) 3beta-tetrahydrosteroids act as gamma-aminobutyric acid type A receptor antagonists.
引用
收藏
页码:10784 / 10795
页数:12
相关论文
共 71 条
[1]   METABOLISM AND MODE OF ACTION OF ANDROGENS IN TARGET TISSUES OF MALE RATS .3. METABOLISM OF 5-ALPHA-ANDROSTANE-3,17-DIONE, OF 5-ALPHA-ANDROSTANE-3-ALPHA,17-BETA-DIOL AND OF 5-ALPHA-ANDROSTANE-3-BETA,17-BETA-DIOL IN TARGET ORGANS AND PERIPHERAL TISSUES [J].
BECKER, H ;
GRABOSCH, E ;
HOFFMANN, C ;
VOIGT, KD .
ACTA ENDOCRINOLOGICA, 1973, 73 (02) :407-416
[2]   Expression cloning and characterization of oxidative 17 beta- and 3 alpha-hydroxysteroid dehydrogenases from rat and human prostate [J].
Biswas, MG ;
Russell, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (25) :15959-15966
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Expression and characterization of four recombinant human dihydrodiol dehydrogenase isoforms:: Oxidation of trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to the activated o-quinone metabolite benzo[a]pyrene-7,8-dione [J].
Burczynski, ME ;
Harvey, RG ;
Penning, TM .
BIOCHEMISTRY, 1998, 37 (19) :6781-6790
[5]   Characterization of a novel type of human microsomal 3α-hydroxysteroid dehydrogenase -: Unique tissue distribution and catalytic properties [J].
Chetyrkin, SV ;
Belyaeva, OV ;
Gough, MH ;
Kedishvili, NY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (25) :22278-22286
[6]   Further characterization of human microsomal 3α-hydroxysteroid dehydrogenase [J].
Chetyrkin, SV ;
Hu, JP ;
Gough, WH ;
Dumaual, N ;
Kedishvili, NY .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2001, 386 (01) :1-10
[7]   ANDROGEN METABOLISM INVITRO BY HUMAN-LEUKOCYTES - VARIATIONS WITH SEX AND AGE [J].
CLAIR, P ;
PATRICOT, MC ;
MATHIAN, B ;
REVOL, A .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1984, 20 (01) :377-381
[8]   Human 20α-hydroxysteroid dehydrogenase:: Crystallographic and site-directed mutagenesis studies lead to the identification of an alternative binding site for C21-steroids [J].
Couture, JF ;
Legrand, P ;
Cantin, L ;
Luu-The, V ;
Labrie, F ;
Breton, R .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 331 (03) :593-604
[9]   Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase [J].
Dufort, I ;
Rheault, P ;
Huang, XF ;
Soucy, P ;
Luu-The, V .
ENDOCRINOLOGY, 1999, 140 (02) :568-574
[10]   SPECIES-DIFFERENCES IN 5-ALPHA-ANDROSTANE-3-BETA, 17-BETA-DIOL HYDROXYLATION BY RAT, MONKEY, AND HUMAN PROSTATE MICROSOMES [J].
GEMZIK, B ;
JACOB, S ;
JENNINGS, S ;
VELTMAN, J ;
PARKINSON, A .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 296 (02) :374-383