FUNCTIONAL CENTRAL LIMIT THEOREMS AND MODERATE DEVIATIONS FOR POISSON CLUSTER PROCESSES

被引:4
作者
Gao, Fuqing [1 ]
Wang, Yujing [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Poisson cluster process; Hawkes process; maximal inequality; central limit theorem; moderate deviation; large deviation; HAWKES PROCESSES; INPUT PROCESS; APPROXIMATION; PREDICTION; NETWORKS;
D O I
10.1017/apr.2020.25
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider functional limit theorems for Poisson cluster processes. We first present a maximal inequality for Poisson cluster processes. Then we establish a functional central limit theorem under the second moment and a functional moderate deviation principle under the Cramer condition for Poisson cluster processes. We apply these results to obtain a functional moderate deviation principle for linear Hawkes processes.
引用
收藏
页码:916 / 941
页数:26
相关论文
共 28 条
  • [1] [Anonymous], 1986, Probability and Measure
  • [2] Some limit theorems for Hawkes processes and application to financial statistics
    Bacry, E.
    Delattre, S.
    Hoffmann, M.
    Muzy, J. F.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (07) : 2475 - 2499
  • [3] Billingsley P., 2013, Convergence of Probability Measures, DOI DOI 10.1002/9780470316962
  • [4] Poisson cluster measures: Quasi-invariance, integration by parts and equilibrium stochastic dynamics
    Bogachev, Leonid
    Daletskii, Alexei
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (02) : 432 - 478
  • [5] Large deviations of poisson cluster processes
    Bordenave, Charles
    Torrisi, Giovanni Luea
    [J]. STOCHASTIC MODELS, 2007, 23 (04) : 593 - 625
  • [6] Modeling Heterogeneous Cellular Networks Interference Using Poisson Cluster Processes
    Chun, Young Jin
    Hasna, Mazen O.
    Ghrayeb, Ali
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2015, 33 (10) : 2182 - 2195
  • [7] Daley D., 2003, INTRO THEORY POINT P
  • [8] HAWKES PROCESSES ON LARGE NETWORKS
    Delattre, Sylvain
    Fournier, Nicolas
    Hoffmann, Marc
    [J]. ANNALS OF APPLIED PROBABILITY, 2016, 26 (01) : 216 - 261
  • [9] Dembo A., 2010, Large Deviations Techniques and Applications
  • [10] Djellout H., 1999, Statistical Inference for Stochastic Processes, V2, P195