Symmetry-breaking for a restricted n-body problem in the Maxwell-ring configuration

被引:1
作者
Calleja, Renato [1 ]
Doedel, Eusebius [2 ]
Garcia-Azpeitia, Carlos [3 ]
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Matemat & Mecan, Admon 20, Mexico City 01000, DF, Mexico
[2] Concordia Univ, Dept Comp Sci, 1455 Blvd Maisonneuve O, Montreal, PQ H3G 1M8, Canada
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
PERIODIC-ORBITS; INVARIANT-MANIFOLDS; RELATIVE EQUILIBRIA; LINEAR-STABILITY; SYSTEMS;
D O I
10.1140/epjst/e2016-60009-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the motion of a massless body interacting with the Maxwell relative equilibrium, which consists of n bodies of equal mass at the vertices of a regular polygon that rotates around a central mass. The massless body has three equilibrium a"<currency> (n) -orbits from which families of Lyapunov orbits emerge. Numerical continuation of these families using a boundary value formulation is used to construct the bifurcation diagram for the case n = 7, also including some secondary and tertiary bifurcating families. We observe symmetry-breaking bifurcations in this system, as well as certain period-doubling bifurcations.
引用
收藏
页码:2741 / 2750
页数:10
相关论文
共 14 条
[1]  
[Anonymous], DIFFER EQU DYN SYST
[2]   Restricted N+1-body problem: existence and stability of relative equilibria [J].
Bang, D ;
Elmabsout, B .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2004, 89 (04) :305-318
[3]   Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem [J].
Calleja, R. C. ;
Doedel, E. J. ;
Humphries, A. R. ;
Lemus-Rodriguez, A. ;
Oldeman, E. B. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 114 (1-2) :77-106
[4]  
DOEDEL EJ, 2003, INT J BIFURCAT CHAOS, V13, P1
[5]   Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the n-body problem [J].
Garcia-Azpeitia, C. ;
Ize, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (05) :2033-2075
[6]   Global bifurcation of planar and spatial periodic solutions in the restricted n-body problem [J].
Garcia-Azpeitia, C. ;
Ize, J. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2011, 110 (03) :217-237
[7]   The web of periodic orbits at L4 [J].
Henrard, J .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2002, 83 (1-4) :291-302
[8]   Particle motions in Maxwell's ring dynamical systems [J].
Kalvouridis, Tilemahos J. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 102 (1-3) :191-206
[9]   Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics [J].
Koon, WS ;
Lo, MW ;
Marsden, JE ;
Ross, SD .
CHAOS, 2000, 10 (02) :427-469
[10]   TRANSVERSALITY OF THE INVARIANT-MANIFOLDS ASSOCIATED TO THE LYAPUNOV FAMILY OF PERIODIC-ORBITS NEAR L2 IN THE RESTRICTED 3-BODY PROBLEM [J].
LLIBRE, J ;
MARTINEZ, R ;
SIMO, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 58 (01) :104-156