FDTD Modeling of Graphene Devices Using Complex Conjugate Dispersion Material Model

被引:109
|
作者
Lin, Hai [1 ]
Pantoja, Mario F. [2 ]
Angulo, Luis D. [2 ]
Alvarez, Jesus [3 ]
Martin, Rafael G. [2 ]
Garcia, Salvador G. [2 ]
机构
[1] Cent China Normal Univ, Wuhan 430079, Peoples R China
[2] Univ Granada, Dept Electromagnetism & Matter Phys, E-18071 Granada, Spain
[3] EADS CASA, Cassidian, Getafe 28906, Spain
关键词
Auxiliary differential equation (ADE); metal-insulator-metal (MIM); surface plasmon-polariton (SPP); PLASMONICS;
D O I
10.1109/LMWC.2012.2227466
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene-based devices constitute a pioneering field of research for their extraordinary electromagnetic properties. The incorporation of appropriate models into numerical simulators is necessary in order to take advantage of these properties. In this work, we propose a method to incorporate graphene-sheet models into the FDTD method. The use of vector-fitting techniques expands the permittivity of graphene into a rational function series of complex conjugate pole-residue pairs, which is implemented into FDTD by an auxiliary differential equation formulation. Simple waveguiding problems validate our approach.
引用
收藏
页码:612 / 614
页数:3
相关论文
共 50 条
  • [1] A Versatile Material Model for the FDTD Simulation of Graphene
    Xu, Di
    Deng, Cheng
    Lin, Hai
    Yang, Helin
    2013 IEEE INTERNATIONAL CONFERENCE ON MICROWAVE TECHNOLOGY & COMPUTATIONAL ELECTROMAGNETICS (ICMTCE), 2013, : 345 - 348
  • [2] Efficient Recursive Convolution Schemes for the Accurate FDTD Modeling of Graphene Interband Contribution via Complex Conjugate Pairs
    Amanatiadis, S. A.
    Zygiridis, T. T.
    Ohtani, T.
    Kanai, Y.
    Kantartzis, N. V.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [3] Efficient Recursive Convolution Schemes for the Accurate FDTD Modeling of Graphene Interband Contribution via Complex Conjugate Pairs
    Amanatiadis, S. A.
    Zygiridis, T. T.
    Ohtani, T.
    Kanai, Y.
    Kantartzis, N., V
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [4] Revisiting the stability of the HIE-FDTD technique for modeling graphene dispersion
    Ramadan, Omar
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 719 - 725
  • [5] One-Step Leapfrog ADI-FDTD Method Using the Complex-Conjugate Pole-Residue Pairs Dispersion Model
    Prokopidis, Konstantinos P.
    Zografopoulos, Dimitrios C.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018, 28 (12) : 1068 - 1070
  • [6] Efficient Modeling and Simulation of Graphene Devices With the LOD-FDTD Method
    Ahmed, Iftikhar
    Khoo, Eng Huat
    Li, Erping
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (06) : 306 - 308
  • [7] Modeling of Dispersive Materials Using Dispersion Models for FDTD Application
    Rakibul Hasan Sagor
    Kh. Arif Shahriar
    Md. Ghulam Saber
    Md. Mahamudun Arif Joy
    Ikramul Hasan Sohel
    Silicon, 2016, 8 : 251 - 275
  • [8] Modeling of Dispersive Materials Using Dispersion Models for FDTD Application
    Sagor, Rakibul Hasan
    Shahriar, Kh. Arif
    Saber, Md. Ghulam
    Joy, Md. Mahamudun Arif
    Sohel, Ikramul Hasan
    SILICON, 2016, 8 (02) : 251 - 275
  • [9] Modeling of Graphene Conductivity Using FDTD in the Near Infrared Frequency
    Sarker, Pejush Chandra
    Rana, Md. Masud
    Sarkar, Ajay Krishno
    2016 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER & TELECOMMUNICATION ENGINEERING (ICECTE), 2016,
  • [10] A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method
    Vial, A.
    Laroche, T.
    Dridi, M.
    Le Cunff, L.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (03): : 849 - 853