Permanence and periodic solutions for a class of delay Nicholson's blowflies models

被引:31
作者
Hou, Xinhua [1 ]
Duan, Lian [2 ]
Huang, Zuda [3 ]
机构
[1] Hunan Ind Polytech, Changsha 410208, Hunan, Peoples R China
[2] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
[3] Hunan Univ Arts & Sci, Coll Math & Comp Sci, Changde 415000, Hunan, Peoples R China
关键词
Nicholson's blowflies model; Permanence; Positive periodic solution; Coincidence degree; Nonlinear density-dependent mortality term;
D O I
10.1016/j.apm.2012.04.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper covers the dynamic behaviors for a class of Nicholson's blowflies models with a nonlinear density-dependent mortality term. By using inequality analyze technique and coincidence degree theory, some sufficient conditions are determined that guarantee the permanence of the model and the existence of positive periodic solutions. Moreover, we give an example to illustrate our main results. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1537 / 1544
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1995, MATH SURVEYS MONOGRA
[2]  
[Anonymous], 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[3]   Nicholson's blowflies differential equations revisited: Main results and open problems [J].
Berezansky, L. ;
Braverman, E. ;
Idels, L. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (06) :1405-1417
[4]  
Chen Y., 2003, Can. Appl. Math. Q., V11, P23, DOI DOI 10.1016/J.CAM.2010.10.007.MR2131833
[5]   Interaction of maturation delay and nonlinear birth in population and epidemic models [J].
Cooke, K ;
van den Driessche, P ;
Zou, X .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (04) :332-352
[6]   NICHOLSON BLOWFLIES REVISITED [J].
GURNEY, WSC ;
BLYTHE, SP ;
NISBET, RM .
NATURE, 1980, 287 (5777) :17-21
[7]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]
[8]  
Hou XH, 2012, ELECTRON J QUAL THEO, P1
[9]  
Kulenovic M. R. S., 1992, Appl. Anal., V43, P109, DOI [10.1080/00036819208840055, DOI 10.1080/00036819208840055]
[10]   Existence of positive periodic solutions for a generalized Nicholson's blowflies model [J].
Li, Jingwen ;
Du, Chaoxiong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) :226-233