Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations

被引:8
|
作者
Wan, Hua [1 ]
Li, Jianming [1 ]
Chang, Shan [2 ]
Lin, Shuoxin [3 ]
Tian, Yuanxin [4 ]
Tian, Xuhong [1 ]
Wang, Meihua [1 ]
Hu, Jianping [5 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
[2] Jiangsu Univ Technol, Sch Elect & Informat Engn, Inst Bioinformat & Med Engn, Changzhou 213001, Peoples R China
[3] Univ Maryland, James Clark Sch Engn, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[4] Southern Med Univ, Sch Pharmaceut Sci, Guangzhou 510515, Guangdong, Peoples R China
[5] Chengdu Univ, Coll Pharm & Biol Engn, Sichuan Ind Inst Antibiot,Antibiot Res & Reevalua, Key Lab Med & Edible Plants Resources Dev,Sichuan, Chengdu 610106, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
SPACER ACQUISITION; ENERGY LANDSCAPE; PROTEIN-BINDING; RNA; PERFORMANCE; INTEGRATION; RESISTANCE; MM/GBSA; MM/PBSA; DEFENSE;
D O I
10.1038/s41598-019-39616-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adaptation in CRISPR-Cas systems enables the generation of an immunological memory to defend against invading viruses. This process is driven by foreign DNA spacer (termed protospacer) selection and integration mediated by Cas1-Cas2 protein. Recently, different states of Cas1-Cas2, in its free form and in complex with protospacer DNAs, were solved by X-ray crystallography. In this paper, molecular dynamics (MD) simulations are employed to study crystal structures of one free and two protospacer-bound Cas1-Cas2 complexes. The simulated results indicate that the protospacer binding markedly increases the system stability, in particular when the protospacer containing the PAM-complementary sequence. The hydrogen bond and binding free energy calculations explain that PAM recognition introduces more specific interactions to increase the cleavage activity of Cas1. By using principal component analysis (PCA) and intramolecular angle calculation, this study observes two dominant slow motions associated with the binding of Ca1-Cas2 to the protospacer and potential target DNAs respectively. The comparison of DNA structural deformation further implies a cooperative conformational change of Cas1-Cas2 and protospacer for the target DNA capture. We propose that this cooperativity is the intrinsic requirement of the CRISPR integration complex formation. This study provides some new insights into the understanding of CRISPR-Cas adaptation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] CRISPR-Cas Systems: Programmable Nuclease Revolutionizing the Molecular Diagnosis
    Pandya, Kavya
    Jagani, Deep
    Singh, Neeru
    MOLECULAR BIOTECHNOLOGY, 2024, 66 (08) : 1739 - 1753
  • [22] Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems
    O'Connell, Mitchell R.
    JOURNAL OF MOLECULAR BIOLOGY, 2019, 431 (01) : 66 - 87
  • [23] Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    DiCarlo, James E.
    Norville, Julie E.
    Mali, Prashant
    Rios, Xavier
    Aach, John
    Church, George M.
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07) : 4336 - 4343
  • [24] Class 1 CRISPR-Cas systems: Genome engineering and silencing
    Klein N.
    Rust S.
    Randau L.
    BIOspektrum, 2022, 28 (4) : 370 - 373
  • [25] Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems
    Beguin, Pierre
    Charpin, Nicole
    Koonin, Eugene V.
    Forterre, Patrick
    Krupovic, Mart
    NUCLEIC ACIDS RESEARCH, 2016, 44 (21) : 10367 - 10376
  • [26] How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration
    Xiao, Yibei
    Ng, Sherwin
    Nam, Ki Hyun
    Ke, Ailong
    NATURE, 2017, 550 (7674) : 137 - +
  • [27] CRYSTAL STRUCTURES OF STREPTOCOCCUS PYOGENES CAS1 AND CAS2 IN THE TYPE II-A CRISPR-CAS SYSTEM
    Ka, Donghyun
    Jung, Seungyong
    Bae, Euiyoung
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : E150 - E150
  • [28] Molecular mechanisms of III-B CRISPR-Cas systems in archaea
    Zhang, Yan
    Lin, Jinzhong
    Feng, Mingxia
    She, Qunxin
    EMERGING TOPICS IN LIFE SCIENCES, 2018, 2 (04) : 483 - 491
  • [29] MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems
    Abby, Sophie S.
    Neron, Bertrand
    Menager, Herve
    Touchon, Marie
    Rocha, Eduardo P. C.
    PLOS ONE, 2014, 9 (10):
  • [30] Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation
    Liu, Tina Y.
    Doudna, Jennifer A.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (42) : 14473 - 14487