What exactly are the properties of scale-free and other networks?

被引:19
作者
Judd, Kevin [1 ]
Small, Michael [1 ]
Stemler, Thomas [1 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Perth, WA 6009, Australia
关键词
GRAPHS;
D O I
10.1209/0295-5075/103/58004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of scale-free networks has been widely applied across natural and physical sciences. Many claims are made about the properties of these networks, even though the concept of scale-free is often vaguely defined. We present tools and procedures to analyse the statistical properties of networks defined by arbitrary degree distributions and other constraints. Doing so reveals the highly likely properties, and some unrecognised richness, of scale-free networks, and casts doubt on some previously claimed properties being due to a scale-free characteristic. editor's choice Copyright (C) EPLA, 2013
引用
收藏
页数:6
相关论文
共 22 条
  • [1] [Anonymous], 1973, FUNDAMENTAL ALGORITH
  • [2] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [3] BEKASSY A., 1972, STUD SCI MATH HUNG, V7, P343
  • [4] Are randomly grown graphs really random? art. no. 041902
    Callaway, DS
    Hopcroft, JE
    Kleinberg, JM
    Newman, MEJ
    Strogatz, SH
    [J]. PHYSICAL REVIEW E, 2001, 64 (04) : 7
  • [5] Generation of uncorrelated random scale-free networks -: art. no. 027103
    Catanzaro, M
    Boguñá, M
    Pastor-Satorras, R
    [J]. PHYSICAL REVIEW E, 2005, 71 (02)
  • [6] Duplication models for biological networks
    Chung, F
    Lu, LY
    Dewey, TG
    Galas, DJ
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (05) : 677 - 687
  • [7] CHUNG F., 2002, Ann. Comb., V6, P125, DOI [10.1007/PL00012580, DOI 10.1007/PL00012580]
  • [8] Power-Law Distributions in Empirical Data
    Clauset, Aaron
    Shalizi, Cosma Rohilla
    Newman, M. E. J.
    [J]. SIAM REVIEW, 2009, 51 (04) : 661 - 703
  • [9] All Scale-Free Networks Are Sparse
    Del Genio, Charo I.
    Gross, Thilo
    Bassler, Kevin E.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (17)
  • [10] Fitzgerald R, 1997, NUMERICAL BAYESIAN M