Analysis of NADPH Supply During Xylitol Production by Engineered Escherichia coli

被引:67
作者
Chin, Jonathan W. [1 ]
Khankal, Reza [1 ]
Monroe, Caroline A. [1 ]
Maranas, Costas D. [1 ]
Cirino, Patrick C. [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
关键词
xylitol; Escherichia coli; xylose reductase; biocatalysis; resting cells; transhydrogenase; PYRIDINE-NUCLEOTIDE TRANSHYDROGENASE; TRANSCRIPTIONAL REGULATION; PHOSPHOGLUCOSE ISOMERASE; METABOLISM; OVEREXPRESSION; DEHYDROGENASE; BIOCATALYSIS; REDUCTASE; MODELS; SYSTEM;
D O I
10.1002/bit.22060
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Escherichia coli strain PC09 (Delta xylB, cAMP-independent CRP (crp*) mutant) expressing an NADPH-dependent xylose reductase from Candida boidinii (CbXR) was previously reported to produce xylitol from xylose while metabolizing glucose [Cirino et al. (2006) Biotechnol Bioeng 95(6): 1167-1176]. This study aims to understand the role of NADPH Supply in xylitol yield and the contribution of key central carbon metabolism enzymes toward xylitol production. Studies in Which the expression of CbXR or a xylose transporter was increased suggest that enzyme activity and xylose transport are not limiting xylitol production in PC09. A constraints-based stoichiometric metabolic network model was used to understand the roles of central carbon metabolism reactions and xylose transport energetics on the theoretical maximum molar xylitol yield (xylitol produced per glucose consumed), and xylitol yields (Y-RPG) were measured from resting cell biotransformations with various PC09 derivative strains. For the case of xylose-proton symport, omitting the Zwf (glucose-6-phosphate dehydrogenase) or PntAB (membrane-bound transhydrogenase) reactions or TCA cycle activity from the model reduces the theoretical maximum yield from 9.2 to 8.8, 3.6, and 8.0 mol xylitol (mol glucose)(-1), respectively. Experimentally, deleting pgi (encoding phosphoglucose isomerase) from strain PC09 improves the yield from 3.4 to 4.0 mol xylitol (mol glucose)(-1) while deleting either or both E. coli transhydrogenases (sthA and pntA) has no significant effect on the measured yield. Deleting either zwf or sucC (TCA cycle) significantly reduces the yield from 3.4 to 2.0 and 2.3 mol xylitol (mol glucose)(-1), respectively. Expression of a xylose reductase with relaxed cofactor specificity increases the yield to 4.0. The large discrepancy between theoretical maximum and experimentally determined yield values suggests that biocatalysis is compromised by pathways competing for reducing equivalents and dissipating energy. The metabolic role of transhydrogenases during E. coli biocatalysis has remained largely unspecified. Our results demonstrate the importance of direct NADPH supply by NADP(+)-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions, and suggest that the pool of reduced cofactors available for biotransformation is not readily interchangeable via transhydrogenase. Biotechnol. Bioeng. 2009;102: 209-220. (C) 2008 Wiley periodicals, Inc.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 38 条
[1]   Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli [J].
Alexeeva, S ;
de Kort, B ;
Sawers, G ;
Hellingwerf, KJ ;
de Mattos, MJT .
JOURNAL OF BACTERIOLOGY, 2000, 182 (17) :4934-4940
[2]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[3]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[4]   Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis:: Constraint-based modeling and experimental verification [J].
Blank, Lars M. ;
Ebert, Birgitta E. ;
Buehler, Bruno ;
Schmid, Andreas .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 100 (06) :1050-1065
[5]  
BOCK A., 1996, Escherichia coli and Salmonella: cellular and molecular biology
[6]   NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain [J].
Buehler, Bruno ;
Park, Jin-Byung ;
Blank, Lars M. ;
Schmid, Andreas .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (05) :1436-1446
[7]  
Canonaco F, 2001, FEMS MICROBIOL LETT, V204, P247, DOI 10.1111/j.1574-6968.2001.tb10892.x
[8]   Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products:: Homoacetate production [J].
Causey, TB ;
Zhou, S ;
Shanmugam, KT ;
Ingram, LO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (03) :825-832
[9]   Engineering Escherichia coli for xylitol production from glucose-xylose mixtures [J].
Cirino, Patrick C. ;
Chin, Jonathan W. ;
Ingram, Lonnie O. .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 95 (06) :1167-1176
[10]   Transcriptional regulation in constraints-based metabolic models of Escherichia coli [J].
Covert, MW ;
Palsson, BO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (31) :28058-28064