An adaptive version of a fourth-order iterative method for quadratic equations

被引:17
作者
Amat, S [1 ]
Busquier, S
Gutiérrez, JM
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Univ La Rioja, Dept Matemat & Computac, Logrono, Spain
关键词
nonlinear quadratic equations; fourth order; semilocal convergence; multiresolution; compression;
D O I
10.1016/j.cam.2005.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fourth-order iterative method for quadratic equations is presented. A semilocal convergence theorem is performed. A multiresolution transform corresponding to interpolatory technique is used for fast application of the method. In designing this algorithm we apply data compression to the linear and the bilinear forms that appear on the method. Finally, some numerical results are studied. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 20 条
[1]  
Altman G., 1961, B ACAD POL SCI SMAP, VIX, P62
[2]   A fast Chebyshev's method for quadratic equations [J].
Amat, S ;
Busquier, S ;
El Kebir, D ;
Molina, J .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) :461-474
[3]  
AMAT S, 2001, CONVERGENCE 3 ORDER, P16
[4]   Multiresolution standard form of a matrix [J].
Arandiga, F ;
Candela, VF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :417-434
[5]   Multiresolution based on weighted averages of the hat function I: Linear reconstruction techniques [J].
Arandiga, F ;
Donat, R ;
Harten, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :160-203
[6]   Nonlinear multiscale decompositions:: The approach of A.!Harten [J].
Aràndiga, F ;
Donat, R .
NUMERICAL ALGORITHMS, 2000, 23 (2-3) :175-216
[7]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[8]  
DELAURIES G, 1989, CONSTR APPROX, V5, P49
[9]  
DONOHO D, 1994, INTERPOLATING WAVELE
[10]  
EZQUERRO JA, 1999, REV ANAL NUMER THEOR, V28, P23