b-chromatic number;
coloring;
b-coloring;
powers of cycles;
GRAPHS;
D O I:
暂无
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
A b-coloring of a graph G by k colors is a proper vertex coloring such that each color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k 1 color classes. The b-chromatic number chi(b)(G) is the maximum integer k for which G has a b-coloring by k colors. Let C-n(r) be the rth power of a cycle of order n. In 2003, Effantin and Kheddouci established the b-chromatic number chi(b)(C-n(r)) for all values of n and r, except for 2r + 3 <= n <= 3r. For the missing cases they presented the lower bound L :- min{n - r - 1, r + 1 + left perpendicular n-r-1/3 right perpendicular} and conjectured that chi(b) (C-n(r)) - L. In this paper, we determine the exact value on chi(b)(C-n(r)) for the missing cases. It turns out that chi(b)(C-n(r)) > L for 2r + 3 <= n <= 2 r + 3 + r-6/4.
机构:
Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, SloveniaUniv Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
Jakovac, Marko
Klavzar, Sandi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, SloveniaUniv Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
Inst Math Phys & Mech, Ljubljana 1000, SloveniaUniv Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
Cabello, Sergio
Jakovac, Marko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, SloveniaUniv Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia