Nonreciprocal unconventional photon blockade in a spinning optomechanical system

被引:200
作者
Li, Baijun [1 ,2 ]
Huang, Ran [1 ,2 ]
Xu, Xunwei [3 ]
Miranowicz, Adam [4 ,5 ]
Jing, Hui [1 ,2 ]
机构
[1] Hunan Normal Univ, Dept Phys, Key Lab Low Dimens Quantum Struct & Quantum Contr, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
[3] East China Jiaotong Univ, Dept Appl Phys, Nanchang 330013, Jiangxi, Peoples R China
[4] RIKEN, Cluster Pioneering Res, Theoret Quantum Phys Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[5] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
基金
中国国家自然科学基金;
关键词
OPTICAL CAVITY; INDUCED TRANSPARENCY; COHERENT GENERATION; NONCLASSICAL LIGHT; QUANTUM; CIRCULATOR; ISOLATORS; DYNAMICS; STATES; CHIP;
D O I
10.1364/PRJ.7.000630
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose how to achieve quantum nonreciprocity via unconventional photon blockade (UPB) in a compound device consisting of an optical harmonic resonator and a spinning optomechanical resonator. We show that, even with very weak single-photon nonlinearity, nonreciprocal UPB can emerge in this system, i.e., strong photon antibunching can emerge only by driving the device from one side but not from the other side. This nonreciprocity results from the Fizeau drag, leading to different splitting of the resonance frequencies for the optical counter-circulating modes. Such quantum nonreciprocal devices can be particularly useful in achieving back- action-free quantum sensing or chiral photonic communications. (C) 2019 Chinese Laser Press
引用
收藏
页码:630 / 641
页数:12
相关论文
共 101 条
[1]   Josephson Directional Amplifier for Quantum Measurement of Superconducting Circuits [J].
Abdo, Baleegh ;
Sliwa, Katrina ;
Shankar, S. ;
Hatridge, Michael ;
Frunzio, Luigi ;
Schoelkopf, Robert ;
Devoret, Michel .
PHYSICAL REVIEW LETTERS, 2014, 112 (16)
[2]   Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor [J].
Ahn, Jonghoon ;
Xu, Zhujing ;
Bang, Jaehoon ;
Deng, Yu-Hao ;
Hoang, Thai M. ;
Han, Qinkai ;
Ma, Ren-Min ;
Li, Tongcang .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[3]  
[Anonymous], 2013, ARXIV13025937
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]   Origin of strong photon antibunching in weakly nonlinear photonic molecules [J].
Bamba, Motoaki ;
Imamoglu, Atac ;
Carusotto, Iacopo ;
Ciuti, Cristiano .
PHYSICAL REVIEW A, 2011, 83 (02)
[6]   Manipulating the Flow of Thermal Noise in Quantum Devices [J].
Barzanjeh, Shabir ;
Aquilina, Matteo ;
Xuereb, Andre .
PHYSICAL REVIEW LETTERS, 2018, 120 (06)
[7]   Observation of Asymmetric Transport in Structures with Active Nonlinearities [J].
Bender, N. ;
Factor, S. ;
Bodyfelt, J. D. ;
Ramezani, H. ;
Christodoulides, D. N. ;
Ellis, F. M. ;
Kottos, T. .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[8]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Photon blockade in an optical cavity with one trapped atom [J].
Birnbaum, KM ;
Boca, A ;
Miller, R ;
Boozer, AD ;
Northup, TE ;
Kimble, HJ .
NATURE, 2005, 436 (7047) :87-90
[10]   Natural and artificial atoms for quantum computation [J].
Buluta, Iulia ;
Ashhab, Sahel ;
Nori, Franco .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (10)