Bifurcation of traveling wave solutions of (2+1) dimensional Konopelchenko-Dubrovsky equations

被引:16
作者
He, Tian-lan [1 ]
机构
[1] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
(2+1) Dimensional Konopelchenko-Dubrovsky equations; The bifurcation theory of planar dynamical systems; The bounded traveling wave solutions;
D O I
10.1016/j.amc.2008.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bifurcation theory method of planar dynamical systems is efficiently employed to find the bounded traveling wave solutions of the (2 + 1) dimensional Konopelchenko-Dubrovsky equations. The bifurcation parameter sets and the corresponding phase portraits are given. Under different parameter conditions, the exact explicit parametric representations of solitary wave solutions, kink (anti-kink) wave solutions and periodic wave solutions are obtained. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:773 / 783
页数:11
相关论文
共 30 条
[1]   Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method [J].
Abdou, M. A. .
NONLINEAR DYNAMICS, 2008, 52 (1-2) :1-9
[2]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[3]  
[Anonymous], 1981, METHOD BIFURCATION T
[4]  
Fan E. G., 2004, INTEGRABLE SYSTEMS C
[5]   Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation [J].
Fan, EG .
PHYSICS LETTERS A, 2001, 282 (1-2) :18-22
[6]   Bifurcation studies on travelling wave solutions for onlinear intensity Klein-Gordon equation [J].
Feng, Dahe ;
Lu, Junliang ;
Li, Jibin ;
He, Tianlan .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) :271-284
[7]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[8]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[9]   Application of homotopy perturbation method to nonlinear wave equations [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2005, 26 (03) :695-700