Korpelevich's method for variational inequality problems on Hadamard manifolds

被引:66
作者
Tang, Guo-ji [1 ]
Huang, Nan-jing [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Extragradient method; Variational inequality; Hadamardmanifold; Pseudomonotone vector field; MONOTONE VECTOR-FIELDS; PROXIMAL POINT ALGORITHM; PROJECTION METHOD; CONVEX-FUNCTIONS; QUASI-CONVEX; SETS;
D O I
10.1007/s10898-011-9773-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The concept of pseudomonotone vector field on Hadamard manifold is introduced. A variant of Korpelevich's method for solving the variational inequality problem is extended from Euclidean spaces to constant curvature Hadamard manifolds. Under a pseudomonotone assumption on the underlying vector field, we prove that the sequence generated by the method converges to a solution of variational inequality, whenever it exists. Moreover, we give an example to show the effectiveness of our method.
引用
收藏
页码:493 / 509
页数:17
相关论文
共 34 条
[11]   Subgradient algorithm on Riemannian manifolds [J].
Ferreira, OP ;
Oliveira, PR .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (01) :93-104
[12]  
Giannessi F., 2001, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models
[13]   Korpelevich's method for variational inequality problems in Banach spaces [J].
Iusem, Alfredo N. ;
Nasri, Mostafa .
JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (01) :59-76
[14]  
Iusem AN., 1997, OPTIMIZATION, V42, P309, DOI DOI 10.1080/02331939708844365
[15]   COMPLEMENTARITY PROBLEMS OVER CONES WITH MONOTONE AND PSEUDOMONOTONE MAPS [J].
KARAMARDIAN, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 18 (04) :445-454
[16]  
Kinderlehrer D., 1980, An introduction to variational inequalities and their applications, V88
[17]  
Korpelevich G. M., 1976, Ekon Mate Metody, V12, P747
[18]   Resolvents of Set-Valued Monotone Vector Fields in Hadamard Manifolds [J].
Li, Chong ;
Lopez, Genaro ;
Martin-Marquez, Victoria ;
Wang, Jin-Hua .
SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (03) :361-383
[19]  
Li C, 2010, TAIWAN J MATH, V14, P541
[20]   Monotone vector fields and the proximal point algorithm on Hadamard manifolds [J].
Li, Chong ;
Lopez, Genaro ;
Martin-Marquez, Victoria .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 :663-683