Carbon dioxide reforming of methane in a SrCe0.7Zr0.2Eu0.1O3-δ proton conducting membrane reactor

被引:17
作者
Li, Jianlin [1 ]
Yoon, Heesung [2 ]
Wachsman, Eric D. [2 ]
机构
[1] Univ Florida, Florida Inst Sustainable Energy, Gainesville, FL 32611 USA
[2] Univ Maryland, Energy Res Ctr, College Pk, MD 20742 USA
关键词
Carbon dioxide reforming of methane; Steam reforming; Proton conducting membrane; Hydrogen permeation; Syngas; SrCe0.7Zr0.2Eu0.1O3-delta; SYNTHESIS GAS; NATURAL-GAS; HYDROGEN PERMEATION; HIGHER HYDROCARBONS; CO2; CATALYSTS; CH4; CONVERSION; SEQUESTRATION; STABILITY;
D O I
10.1016/j.ijhydene.2012.09.134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Utilizing CO2 for fuel production holds the promise for reduced carbon energy cycles. In this paper we demonstrate a membrane reactor, integrating catalytic CO2 reforming of methane with in-situ H-2 separation, that results in increased CO2 and CH4 conversion and H-2 production compared to a Ni catalyst alone. The tubular proton-conducting SrCe0.7Zr0.2Eu0.1O3-delta membrane reactor demonstrates that the addition of the membrane improves CO2 conversion, due to in-situ H-2 removal, by 10% and 30% at 900 degrees C for CH4/CO2 = 1/1 and CH4/CO2/H2O = 2/1/1 feed ratios, respectively. It also improves total H-2 production at 900 degrees C by 15% and 18% for CH4/CO2 = 1/1 and CH4/CO2/H2O = 2/1/1, respectively. Further, the H-2/CO in the reactor side effluent can be adjusted for subsequent desired Fischer-Tropsch products by combining CO2 reforming and steam reforming of methane. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19125 / 19132
页数:8
相关论文
共 51 条
[21]   Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts [J].
Liu, Dapeng ;
Lau, Raymond ;
Borgna, Armando ;
Yang, Yanhui .
APPLIED CATALYSIS A-GENERAL, 2009, 358 (02) :110-118
[22]   CO2 reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum [J].
Martínez, R ;
Romero, E ;
Guimon, C ;
Bilbao, R .
APPLIED CATALYSIS A-GENERAL, 2004, 274 (1-2) :139-149
[23]   Fossil hydrogen with reduced CO2 emission:: Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles [J].
Muradov, N ;
Chen, Z ;
Smith, F .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (10) :1149-1158
[24]   Potential of Ni supported on clinoptilolite catalysts for carbon dioxide reforming of methane [J].
Nimwattanakul, W ;
Luengnaruemitchai, A ;
Jitkarnka, S .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (01) :93-100
[25]   Effect of Eu dopant concentration in SrCe1-xEuxO3-δ on ambipolar conductivity [J].
Oh, Tak-keun ;
Yoon, Heesung ;
Wachsman, E. D. .
SOLID STATE IONICS, 2009, 180 (23-25) :1233-1239
[26]   Hydrogen permeation through thin supported SrZr0.2Ce0.8-xEuxO3-δ membranes [J].
Oh, Takkeun ;
Yoon, Heesung ;
Li, Jianlin ;
Wachsman, E. D. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 345 (1-2) :1-4
[27]  
Oh T, 2009, IONICS, V15, P525, DOI 10.1007/s11581-009-0349-x
[28]   Electrical conducting properties of proton-conducting terbium-doped strontium cerate membrane [J].
Qi, XW ;
Lin, YS .
SOLID STATE IONICS, 1999, 120 (1-4) :85-93
[29]   CRYSTAL-STRUCTURE OF THE HIGH-TEMPERATURE PROTONIC CONDUCTOR SRCEO3 [J].
RANLOV, J ;
NIELSEN, K .
JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (06) :867-868
[30]   Analyzing enhancement of CO2 reforming of CH4 in Pd membrane reactors [J].
Raybold, TM ;
Huff, MC .
AICHE JOURNAL, 2002, 48 (05) :1051-1061