Carbon dioxide reforming of methane in a SrCe0.7Zr0.2Eu0.1O3-δ proton conducting membrane reactor

被引:17
作者
Li, Jianlin [1 ]
Yoon, Heesung [2 ]
Wachsman, Eric D. [2 ]
机构
[1] Univ Florida, Florida Inst Sustainable Energy, Gainesville, FL 32611 USA
[2] Univ Maryland, Energy Res Ctr, College Pk, MD 20742 USA
关键词
Carbon dioxide reforming of methane; Steam reforming; Proton conducting membrane; Hydrogen permeation; Syngas; SrCe0.7Zr0.2Eu0.1O3-delta; SYNTHESIS GAS; NATURAL-GAS; HYDROGEN PERMEATION; HIGHER HYDROCARBONS; CO2; CATALYSTS; CH4; CONVERSION; SEQUESTRATION; STABILITY;
D O I
10.1016/j.ijhydene.2012.09.134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Utilizing CO2 for fuel production holds the promise for reduced carbon energy cycles. In this paper we demonstrate a membrane reactor, integrating catalytic CO2 reforming of methane with in-situ H-2 separation, that results in increased CO2 and CH4 conversion and H-2 production compared to a Ni catalyst alone. The tubular proton-conducting SrCe0.7Zr0.2Eu0.1O3-delta membrane reactor demonstrates that the addition of the membrane improves CO2 conversion, due to in-situ H-2 removal, by 10% and 30% at 900 degrees C for CH4/CO2 = 1/1 and CH4/CO2/H2O = 2/1/1 feed ratios, respectively. It also improves total H-2 production at 900 degrees C by 15% and 18% for CH4/CO2 = 1/1 and CH4/CO2/H2O = 2/1/1, respectively. Further, the H-2/CO in the reactor side effluent can be adjusted for subsequent desired Fischer-Tropsch products by combining CO2 reforming and steam reforming of methane. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19125 / 19132
页数:8
相关论文
共 51 条
[1]  
Adus H., 1996, P 11 WORLD HYDROGEN, P525
[2]   Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery [J].
Blok, K ;
Williams, RH ;
Katofsky, RE ;
Hendriks, CA .
ENERGY, 1997, 22 (2-3) :161-168
[3]   CO2-CH4 reforming over NiO/γ-Al2O3 in fixed/fluidized-bed multi-switching mode [J].
Chen, X ;
Honda, K ;
Zhang, ZG .
APPLIED CATALYSIS A-GENERAL, 2005, 279 (1-2) :263-271
[4]   Microwave-assisted dry reforming of methane [J].
Fidalgo, B. ;
Dominguez, A. ;
Pis, J. J. ;
Menendez, J. A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (16) :4337-4344
[5]   Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment [J].
Fu, Qingxi ;
Mabilat, Corentin ;
Zahid, Mohsine ;
Brisse, Annabelle ;
Gautier, Ludmila .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (10) :1382-1397
[6]   Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α thin films [J].
Hamakawa, S ;
Li, L ;
Li, A ;
Iglesia, E .
SOLID STATE IONICS, 2002, 148 (1-2) :71-81
[7]   Proton conducting ceramics and their applications [J].
Iwahara, H .
SOLID STATE IONICS, 1996, 86-8 :9-15
[8]   NERNSTIAN HYDROGEN SENSOR USING BACEO3-BASED, PROTON-CONDUCTING CERAMICS OPERATIVE AT 200-DEGREES-C-900-DEGREES-C [J].
IWAHARA, H ;
UCHIDA, H ;
OGAKI, K ;
NAGATO, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (01) :295-299
[9]   Mechanistic study of the unusual catalytic properties of a new Ni-Ce mixed oxide for the CO2 reforming of methane [J].
Kim, Do Kyoung ;
Stoewe, Klaus ;
Mueller, Frank ;
Maier, Wilhelm F. .
JOURNAL OF CATALYSIS, 2007, 247 (01) :101-111
[10]   Proton-conducting oxides [J].
Kreuer, KD .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :333-359