Spectral analysis of hermite cubic spline collocation systems

被引:16
作者
Sun, WW [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Peoples R China
关键词
spline collocation; differentiation matrices; eigenvalues;
D O I
10.1137/S0036142997322722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an eigenvalue analysis of the first-order and second-order Hermite cubic spline collocation differentiation matrices with arbitrary collocation points. Some important features are explored and compared with some other discrete methods, such as finite difference methods.
引用
收藏
页码:1962 / 1975
页数:14
相关论文
共 24 条
[1]  
ALLEN MB, 1983, J SOC PETROLEUM FEB, P135
[2]   STABILITY OF COLLOCATION AT GAUSSIAN POINTS [J].
ASCHER, U ;
BADER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (02) :412-422
[3]  
ASCHER U, 1981, ACM T MATH SOFTWARE, V7, P209, DOI 10.1145/355945.355950
[4]  
Ascher U.M., 1988, NUMERICAL SOLUTION B
[5]   FAST DIRECT SOLVERS FOR PIECEWISE HERMITE BICUBIC ORTHOGONAL SPLINE COLLOCATION EQUATIONS [J].
BIALECKI, B ;
FAIRWEATHER, G ;
BENNETT, KR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :156-173
[6]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[7]   COLLOCATION METHODS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS IN ONE SPACE DIMENSION [J].
CERUTTI, JH ;
PARTER, SV .
NUMERISCHE MATHEMATIK, 1976, 26 (03) :227-254
[8]   COLLOCATION AT GAUSSIAN POINTS [J].
DEBOOR, C ;
SWARTZ, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :582-606
[9]   THE PERFORMANCE OF THE COLLOCATION AND GALERKIN METHODS WITH HERMITE BI-CUBICS [J].
DYKSEN, WR ;
HOUSTIS, EN ;
LYNCH, RE ;
RICE, JR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :695-715
[10]   TENSOR PRODUCT GENERALIZED ADI METHODS FOR SEPARABLE ELLIPTIC PROBLEMS [J].
DYKSEN, WR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) :59-76