Energy Transfer to the Hydrogen Bond in the (H2O)2 + H2O Collision

被引:9
|
作者
Shin, H. K. [1 ]
机构
[1] Univ Nevada, Dept Chem, Reno, NV 89557 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2018年 / 122卷 / 13期
关键词
AB-INITIO CALCULATIONS; MATRIX INFRARED DATA; WATER-DIMER; VIBRATIONAL-ENERGY; SPECTROSCOPIC DETERMINATION; THEORETICAL INVESTIGATIONS; BENDING MODE; RELAXATION; H2O; DYNAMICS;
D O I
10.1021/acs.jpcb.7b09695
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Trajectory procedures are used to study the collision between the vibrationally excited H2O and the ground-state (H2O)(2) with particular reference to energy transfer to the hydrogen bond through the inter- and intramolecular pathways. In nearly 98% of the trajectories, energy transfer processes occur on a subpicosecond scale (<= 0.7 ps). The H2O transfers approximately three-quarters of its excitation energy to the OH stretches of the dimer. The first step of the intramolecular pathway in the dimer involves a near-resonant first overtone transition from the OH stretch to the bending mode. The energy transfer probability in the presence of the 1:2 resonance is 0.61 at 300 K. The bending mode then redistributes its energy to low-frequency intermolecular vibrations in a series of small excitation steps, with the pathway which results in the hydrogen-bonding modes gaining most of the available energy. The hydrogen bonding in similar to 50% of the trajectories ruptures on vibrational excitation, leaving one quantum in the bend of the monomer fragment. In a small fraction of trajectories, the duration of collision is longer than 1 ps, during which the dimer and H2O form a short-lived complex through a secondary hydrogen bond, which undergoes large amplitude oscillations.
引用
收藏
页码:3307 / 3317
页数:11
相关论文
共 50 条
  • [1] THE HYDROGEN-BOND, AND THE STRUCTURE AND PROPERTIES OF H2O AND (H2O)2
    BUCKINGHAM, AD
    JOURNAL OF MOLECULAR STRUCTURE, 1991, 250 (2-4) : 111 - 118
  • [2] Theoretical study of mixed hydrogen-bonded complexes:: H2O•••HCN•••H2O and H2O•••HCN•••HCN•••H2O
    Rivelino, R
    Canuto, S
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (50): : 11260 - 11265
  • [3] SCF-CI STUDIES OF CORRELATION EFFECTS ON HYDROGEN-BONDING AND ION HYDRATION - SYSTEMS - H2O,H+ . H2O, LI+ . H2O, F- . H2O, AND H2O . H2O
    DIERCKSEN, GHF
    KRAEMER, WP
    ROOS, BO
    THEORETICA CHIMICA ACTA, 1975, 36 (04): : 249 - 274
  • [4] Tracking the energy flow in the hydrogen exchange reaction OH + H2O → H2O + OH
    Zhu, Yongfa
    Ping, Leilei
    Bai, Mengna
    Liu, Yang
    Song, Hongwei
    Li, Jun
    Yang, Minghui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (18) : 12543 - 12556
  • [5] The water dimer reaction OH + (H2O)2 → (H2O)-OH + H2O
    Gao, Aifang
    Li, Guoliang
    Peng, Bin
    Xie, Yaoming
    Schaefer, Henry F., III
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (28) : 18279 - 18287
  • [6] Spectroscopic snapshot for neutral water nonamer (H2O)9: Adding a H2O onto a hydrogen bond-unbroken edge of (H2O)8
    Zheng, Huijun
    Zhang, Yang-Yang
    Wang, Tiantong
    Jiang, Shuai
    Yan, Wenhui
    Wang, Chong
    Zhao, Ya
    Hu, Han-Shi
    Yang, Jiayue
    Zhang, Weiqing
    Wu, Guorong
    Dai, Dongxu
    Li, Gang
    Li, Jun
    Yang, Xueming
    Jiang, Ling
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (01):
  • [7] Vibrational energy transfer and relaxation in O2 and H2O
    Huestis, David L.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (21): : 6638 - 6642
  • [8] Interaction Energy and the Shift in OH Stretch Frequency on Hydrogen Bonding for the H2O→H2O, CH3OH→H2O, and H2O→CH3OH dimers
    Campen, Richard Kramer
    Kubicki, James D.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (05) : 963 - 972
  • [9] PROTON MAGNETIC SHIELDING IN H2O AND (H2O)2
    JASZUNSKI, M
    SADLEJ, AJ
    THEORETICA CHIMICA ACTA, 1973, 30 (03): : 257 - 265
  • [10] Vibrational quenching of H2O in collision with H2
    Faure, A
    Wiesenfeld, L
    Wernli, M
    Valiron, P
    PROCEEDINGS OF THE DUSTY AND MOLECULAR UNIVERSE: A PRELUDE TO HERSCHEL AND ALMA, 2005, 577 : 361 - 362