Conjugate gradients versus multigrid solvers for diffusion-based correlation models in data assimilation

被引:7
作者
Gratton, S. [1 ,2 ]
Toint, P. L. [3 ]
Tshimanga, J. [1 ]
机构
[1] CERFACS SUC URA 1875, Toulouse, France
[2] ENSEEIHT INP, Toulouse, France
[3] FUNDP Univ Namur, NAXYS, Namur, Belgium
关键词
4D-Var; covariance design; linear system; iterative method;
D O I
10.1002/qj.2050
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This article provides a theoretical and experimental comparison between conjugate gradients and multigrid, two iterative schemes for solving linear systems, in the context of applying diffusion-based correlation models in data assimilation. In this context, a large number of such systems has to be (approximately) solved if the implicit mode is chosen for integrating the involved diffusion equation over pseudo-time, thereby making their efficient handling crucial for practical performance. It is shown that the multigrid approach has a significant advantage, especially for larger correlation lengths and/or large problem sizes.
引用
收藏
页码:1481 / 1487
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1999, SPRINGER SCI
[2]  
[Anonymous], 2001, Matrix Analysis and Applied Linear Algebra
[3]   A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1971-1996
[4]  
Briggs W.L., 2000, A Multigrid Tutorial, V2nd
[5]   Background-error correlation model based on the implicit solution of a diffusion equation [J].
Carrier, Matthew J. ;
Ngodock, Hans .
OCEAN MODELLING, 2010, 35 (1-2) :45-53
[6]  
COURTIER P, 1994, Q J ROY METEOR SOC, V120, P1367, DOI 10.1256/smsqj.51911
[7]  
Daley R, 1991, ATMOSPERIC DATA ANAL
[8]  
DENNIS J. E., 1996, Numerical Methods for Unconstrained Optimization and Nonlinear Equations
[9]  
DERBER J, 1989, J PHYS OCEANOGR, V19, P1333, DOI 10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO
[10]  
2