LOCALIZATION THEOREMS FOR NONLINEAR EIGENVALUE PROBLEMS

被引:20
作者
Bindel, David [1 ]
Hood, Amanda [2 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14850 USA
关键词
nonlinear eigenvalue problems; pseudospectra; Gershgorin's theorem; perturbation theory; BACKWARD ERROR; STRUCTURED PSEUDOSPECTRA; MATRIX FUNCTIONS; PERTURBATION;
D O I
10.1137/130913651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T : Omega -> C-nxn be a matrix-valued function that is analytic on some simply connected domain Omega subset of C A point lambda is an element of Omega is an eigenvalue if the matrix T(lambda) is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.
引用
收藏
页码:1728 / 1749
页数:22
相关论文
共 47 条
[1]  
Ahmad SS, 2011, ELECTRON T NUMER ANA, V38, P275
[2]   Linearization of matrix polynomials expressed in polynomial bases [J].
Amiraslani, A. ;
Corless, R. M. ;
Lancaster, P. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (01) :141-157
[3]  
[Anonymous], 2000, SIAM
[4]  
[Anonymous], 2008, FUNCTIONS MATRICES
[5]  
[Anonymous], 1960, NUMER MATH, DOI 10.1007/bf01386217
[6]  
[Anonymous], 2013, APPROXIMATION THEORY
[7]  
[Anonymous], MATH SCI ENG
[8]  
Ascher U.M., 1998, Computer methods for ordinary differential equations and differential-algebraic equations, V61, DOI DOI 10.1137/1.9781611971392
[9]   NLEVP: A Collection of Nonlinear Eigenvalue Problems [J].
Betcke, Timo ;
Higham, Nicholas J. ;
Mehrmann, Volker ;
Schroeder, Christian ;
Tisseur, Francoise .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02)
[10]  
Bindel D., Theory and computation of resonances in 1d scattering