Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials

被引:134
作者
Nie, Anmin [1 ,4 ]
Gan, Li-Yong [2 ]
Chong, Yingchun [2 ]
Asayesh-Ardakani, Hasti [1 ]
Li, Qianqian [3 ]
Dong, Cezhou [3 ]
Tao, Runzhe [4 ]
Mashayek, Farzad [5 ]
Wang, Hong-Tao [3 ]
Schwingenschloegl, Udo [2 ]
Klie, Robert F. [4 ]
Yassar, Reza S. [1 ,4 ,5 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[2] King Abdullah Univ Sci & Technol, Dept Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[3] Zhejiang Univ, Inst Appl Mech, Hangzhou 310027, Zhejiang, Peoples R China
[4] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[5] Univ Illinois, Mech & Ind Engn Dept, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
lithium-ion batteries; in situ STEM; atomic scale; reaction front; tin oxide nanowires; TRANSMISSION ELECTRON-MICROSCOPY; ELECTROCHEMICAL LITHIATION; LITHIUM STORAGE; ION BATTERIES; SITU; NANOWIRES; EVOLUTION; ENERGY; NANOPARTICLES; DISLOCATIONS;
D O I
10.1021/nn402125e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present work, taking advantage of aberration-corrected scanning transmission electron microscopy, we show that the dynamic lithiation process of anode materials can be revealed in an unprecedented resolution. Atomically resolved imaging of the lithiation process in SnO2 nanowires illustrated that the movement, reaction, and generation of b = [(11) over bar1] mixed dislocations leading the lithiated stripes effectively facilitated lithium-ion insertion into the crystalline interior. The geometric phase analysis and density functional theory simulations indicated that lithium ions initial preference to diffuse along the [001] direction in the {200} planes of SnO2 nanowires introduced the lattice expansion and such dislocation behaviors. At the later stages of lithiation, the Li-induced amorphization of ruble SnO2 and the formation of crystalline Sn and LixSn particles in the Li2O matrix were observed.
引用
收藏
页码:6203 / 6211
页数:9
相关论文
共 48 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   In Situ Electrochemical Lithiation/Delithiation Observation of Individual Amorphous Si Nanorods [J].
Ghassemi, Hessam ;
Au, Ming ;
Chen, Ning ;
Heiden, Patricia A. ;
Yassar, Reza S. .
ACS NANO, 2011, 5 (10) :7805-7811
[3]   Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery [J].
Ghassemi, Hessam ;
Au, Ming ;
Chen, Ning ;
Heiden, Patricia A. ;
Yassar, Reza S. .
APPLIED PHYSICS LETTERS, 2011, 99 (12)
[4]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[5]   Direct Observation of Lithium Staging in Partially Delithiated LiFePO4 at Atomic Resolution [J].
Gu, Lin ;
Zhu, Changbao ;
Li, Hong ;
Yu, Yan ;
Li, Chilin ;
Tsukimoto, Susumu ;
Maier, Joachim ;
Ikuhara, Yuichi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (13) :4661-4663
[6]   Conditions and reasons for incoherent imaging in STEM [J].
Hartel, P ;
Rose, H ;
Dinges, C .
ULTRAMICROSCOPY, 1996, 63 (02) :93-114
[7]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[8]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520
[9]   Quantitative measurement of displacement and strain fields from HREM micrographs [J].
Hytch, MJ ;
Snoeck, E ;
Kilaas, R .
ULTRAMICROSCOPY, 1998, 74 (03) :131-146
[10]   Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy [J].
Hytch, MJ ;
Putaux, JL ;
Pénisson, JM .
NATURE, 2003, 423 (6937) :270-273