Time series AR model parameter estimation with missing observation data

被引:1
作者
Ding, Jie [1 ]
Chen, Xiaoming [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
来源
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23 | 2008年
关键词
AR models; recursive identification; parameter estimation; convergence properties; extended least squares; missing data;
D O I
10.1109/WCICA.2008.4593847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on identification problems of auto-regression (AR) models with missing output observation data. The standard least squares algorithm cannot be applied to the AR models due to the missing output data. To estimate the parameters of the AR models, we employ the polynomial transformation technique to transform the AR models into the auto-regression moving average (ARMA) models, which can be identified from available scarce observation data. Then, we analyze the convergence properties of the algorithm in details and give an example to test and illustrate the algorithm involved.
引用
收藏
页码:5632 / 5636
页数:5
相关论文
共 50 条
  • [21] Spectral estimation for locally stationary time series with missing observations
    Marina I. Knight
    Matthew A. Nunes
    Guy P. Nason
    Statistics and Computing, 2012, 22 : 877 - 895
  • [22] Spectral estimation for locally stationary time series with missing observations
    Knight, Marina I.
    Nunes, Matthew A.
    Nason, Guy P.
    STATISTICS AND COMPUTING, 2012, 22 (04) : 877 - 895
  • [23] Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors
    Li, Tengjun
    Zhang, Zhikang
    Song, Yunquan
    AXIOMS, 2024, 13 (05)
  • [24] Missing data estimation method for time series data in structure health monitoring systems by probability principal component analysis
    Li, Linchao
    Liu, Hanlin
    Zhou, Haijun
    Zhang, Chaodong
    ADVANCES IN ENGINEERING SOFTWARE, 2020, 149
  • [25] System parameter estimation with input/output noisy data and missing measurements
    Chen, JM
    Chen, BS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1548 - 1558
  • [26] Prediction of environmental missing data time series by Support Vector Machine Regression and Correlation Dimension estimation
    Camastra, Francesco
    Capone, Vincenzo
    Ciaramella, Angelo
    Riccio, Angelo
    Staiano, Antonino
    ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 150
  • [27] Comparison methods of estimating missing data in real data time series
    Tasho, Eljona Milo
    Zeqo, Lorena Margo
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (10)
  • [28] A New Recursive Parameter Estimation Algorithm of Multi-Variable Time-Varying AR Model
    曾鹏
    王绍棣
    黄仁
    Journal of Southeast University(English Edition), 1996, (02) : 120 - 125
  • [29] Consistency of stochastic gradient parameter and missing output estimation by using a polynomial transformation
    Ding, Feng
    Chen, Huibo
    Xiao, Yongsong
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1308 - 1313
  • [30] Time series cluster kernel for learning similarities between multivariate time series with missing data
    Mikalsen, Karl Oyvind
    Bianchi, Filippo Maria
    Soguero-Ruiz, Cristina
    Jenssen, Robert
    PATTERN RECOGNITION, 2018, 76 : 569 - 581