Time series AR model parameter estimation with missing observation data

被引:1
|
作者
Ding, Jie [1 ]
Chen, Xiaoming [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
关键词
AR models; recursive identification; parameter estimation; convergence properties; extended least squares; missing data;
D O I
10.1109/WCICA.2008.4593847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on identification problems of auto-regression (AR) models with missing output observation data. The standard least squares algorithm cannot be applied to the AR models due to the missing output data. To estimate the parameters of the AR models, we employ the polynomial transformation technique to transform the AR models into the auto-regression moving average (ARMA) models, which can be identified from available scarce observation data. Then, we analyze the convergence properties of the algorithm in details and give an example to test and illustrate the algorithm involved.
引用
收藏
页码:5632 / 5636
页数:5
相关论文
共 50 条
  • [1] Online Learning for Time Series Prediction of AR Model with Missing Data
    Yang, Haimin
    Pan, Zhisong
    Tao, Qing
    NEURAL PROCESSING LETTERS, 2019, 50 (03) : 2247 - 2263
  • [2] Online Learning for Time Series Prediction of AR Model with Missing Data
    Haimin Yang
    Zhisong Pan
    Qing Tao
    Neural Processing Letters, 2019, 50 : 2247 - 2263
  • [3] Parameter Estimation of Heavy-Tailed AR Model With Missing Data Via Stochastic EM
    Liu, Junyan
    Kumar, Sandeep
    Palomar, Daniel P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (08) : 2159 - 2172
  • [4] The Relationship of Time Span and Missing Data on the Noise Model Estimation of GNSS Time Series
    Sun, Xiwen
    Lu, Tieding
    Hu, Shunqiang
    Huang, Jiahui
    He, Xiaoxing
    Montillet, Jean-Philippe
    Ma, Xiaping
    Huang, Zhengkai
    REMOTE SENSING, 2023, 15 (14)
  • [5] Parameter estimation of time varying mixed AR model
    Kong Zhi Li Lun Yu Ying Yong, 5 (733-735, 738):
  • [6] The Parameter Estimation of Lee-Carter Model with Missing Data
    Wu Xiaokun
    PROCEEDINGS OF 2016 CHINA INTERNATIONAL CONFERENCE ON INSURANCE AND RISK MANAGEMENT, 2016, : 736 - 744
  • [7] ESTIMATION OF TIME-SERIES MODELS IN THE PRESENCE OF MISSING DATA
    DUNSMUIR, W
    ROBINSON, PM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (375) : 560 - 568
  • [8] Missing observation analysis for matrix-variate time series data
    Triantafyllopoulos, K.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (16) : 2647 - 2653
  • [9] Research on parameter estimation of time-varying AR model
    Wang, WH
    Wang, WX
    PIMRC 2003: 14TH IEEE 2003 INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS PROCEEDINGS, VOLS 1-3 2003, 2003, : 2378 - 2382
  • [10] A NONLINEAR TIME-SERIES MODEL AND ESTIMATION OF MISSING OBSERVATIONS
    ABRAHAM, B
    THAVANESWARAN, A
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (03) : 493 - 504