Time series AR model parameter estimation with missing observation data

被引:1
作者
Ding, Jie [1 ]
Chen, Xiaoming [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
来源
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23 | 2008年
关键词
AR models; recursive identification; parameter estimation; convergence properties; extended least squares; missing data;
D O I
10.1109/WCICA.2008.4593847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on identification problems of auto-regression (AR) models with missing output observation data. The standard least squares algorithm cannot be applied to the AR models due to the missing output data. To estimate the parameters of the AR models, we employ the polynomial transformation technique to transform the AR models into the auto-regression moving average (ARMA) models, which can be identified from available scarce observation data. Then, we analyze the convergence properties of the algorithm in details and give an example to test and illustrate the algorithm involved.
引用
收藏
页码:5632 / 5636
页数:5
相关论文
共 50 条
  • [1] Online Learning for Time Series Prediction of AR Model with Missing Data
    Haimin Yang
    Zhisong Pan
    Qing Tao
    Neural Processing Letters, 2019, 50 : 2247 - 2263
  • [2] Online Learning for Time Series Prediction of AR Model with Missing Data
    Yang, Haimin
    Pan, Zhisong
    Tao, Qing
    NEURAL PROCESSING LETTERS, 2019, 50 (03) : 2247 - 2263
  • [3] The Relationship of Time Span and Missing Data on the Noise Model Estimation of GNSS Time Series
    Sun, Xiwen
    Lu, Tieding
    Hu, Shunqiang
    Huang, Jiahui
    He, Xiaoxing
    Montillet, Jean-Philippe
    Ma, Xiaping
    Huang, Zhengkai
    REMOTE SENSING, 2023, 15 (14)
  • [4] Time series AR modeling with missing observations based on the polynomial transformation
    Ding, Jie
    Han, Lili
    Chen, Xiaoming
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) : 527 - 536
  • [5] The Parameter Estimation of Lee-Carter Model with Missing Data
    Wu Xiaokun
    PROCEEDINGS OF 2016 CHINA INTERNATIONAL CONFERENCE ON INSURANCE AND RISK MANAGEMENT, 2016, : 736 - 744
  • [6] Least-squares parameter estimation for systems with irregularly missing data
    Ding, Feng
    Ding, Jie
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2010, 24 (07) : 540 - 553
  • [7] Least square estimator of the parameter of AR-ARCH model in the presence of missing data
    Hamaz, Abdelghani
    Altendji, Belkais
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2021, 60 (01): : 15 - 23
  • [8] Impact of Missing Data on Parameter Estimation Algorithm of Normal Distribution
    Wang Feng
    Wang Shaotong
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 574 - 578
  • [9] Statistical inference for the binomial Ar(1) model with missing data
    Zhang, Rui
    Zhang, Yong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (12) : 4755 - 4763
  • [10] Statistical inference for the binomial Ar(1) model with missing data
    Rui Zhang
    Yong Zhang
    Stochastic Environmental Research and Risk Assessment, 2023, 37 : 4755 - 4763