Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks

被引:42
作者
Heim, Matthias [1 ,2 ]
Rousseau, Lionel [3 ]
Reculusa, Stephane [1 ,2 ]
Urbanova, Veronika [1 ,2 ,4 ]
Mazzocco, Claire [5 ]
Joucla, Sebastien [5 ]
Bouffier, Laurent [1 ,2 ]
Vytras, Karel [4 ]
Bartlett, Philip [6 ]
Kuhn, Alexander [1 ,2 ]
Yvert, Blaise [5 ]
机构
[1] Univ Bordeaux, ISM, UMR5255, Bordeaux, France
[2] CNRS, ISM, UMR5255, Bordeaux, France
[3] Univ Paris Est, ESYCOM, ESIEE Paris, Noisy Le Grand, France
[4] Univ Pardubice, Fac Chem Technol, Dept Analyt Chem, Pardubice, Czech Republic
[5] Univ Bordeaux, Inst Neurosci Cognit & Integrat Aquitaine, UMR5287, Bordeaux, France
[6] Univ Southampton, Sch Chem, Southampton, Hants, England
关键词
electrophysiology; nanotechnology; neural implant; prosthesis; multielectrode; neural probes; MESOPOROUS PLATINUM FILMS; MULTIELECTRODE ARRAY; FIELD POTENTIALS; ELECTRODE ARRAY; STIMULATION;
D O I
10.1152/jn.00711.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Heim M, Rousseau L, Reculusa S, Urbanova V, Mazzocco C, Joucla S, Bouffier L, Vytras K, Bartlett P, Kuhn A, Yvert B. Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. J Neurophysiol 108: 1793-1803, 2012. First published June 27, 2012; doi:10.1152/jn.00711.2011.-Microelectrode arrays (MEAs) are appealing tools to probe large neural ensembles and build neural prostheses. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, several major problems become limiting factors when the size of the microelectrodes decreases. In particular, regarding recording of neural activity, the intrinsic noise level of a microelectrode dramatically increases when the size becomes small (typically below 20-mu m diameter). Here, we propose to overcome this limitation using a template-based, single-scale meso-or two-scale macro-/mesoporous modification of the microelectrodes, combining the advantages of an overall small geometric surface and an active surface increased by several orders of magnitude. For this purpose, standard platinum MEAs were covered with a highly porous platinum overlayer obtained by lyotropic liquid crystal templating possibly in combination with a microsphere templating approach. These porous coatings were mechanically more robust than Pt-black coating and avoid potential toxicity issues. They had a highly increased active surface, resulting in a noise level similar to 3 times smaller than that of conventional flat electrodes. This approach can thus be used to build highly dense arrays of small-size microelectrodes for sensitive neural signal detection.
引用
收藏
页码:1793 / 1803
页数:11
相关论文
共 37 条
[1]   Mesoporous platinum films from lyotropic liquid crystalline phases [J].
Attard, GS ;
Bartlett, PN ;
Coleman, NRB ;
Elliott, JM ;
Owen, JR ;
Wang, JH .
SCIENCE, 1997, 278 (5339) :838-840
[2]   High-density electrode array for imaging in vitro electrophysiological activity [J].
Berdondini, L ;
van der Wal, PD ;
Guenat, O ;
de Rooij, NF ;
Koudelka-Hep, M ;
Seitz, P ;
Kaufmann, R ;
Metzler, P ;
Blanc, N ;
Rohr, S .
BIOSENSORS & BIOELECTRONICS, 2005, 21 (01) :167-174
[3]   BioMEA™: A versatile high-density 3D microelectrode array system using integrated electronics [J].
Charvet, Guillaume ;
Rousseau, Lionel ;
Billoint, Olivier ;
Gharbi, Sadok ;
Rostaing, Jean-Pierre ;
Joucla, Sebastien ;
Trevisiol, Michel ;
Bourgerette, Alain ;
Chauvet, Philippe ;
Moulin, Celine ;
Goy, Francois ;
Mercier, Bruno ;
Colin, Mikael ;
Spirkovitch, Serge ;
Fanet, Herve ;
Meyrand, Pierre ;
Guillemaud, Regis ;
Yvert, Blaise .
BIOSENSORS & BIOELECTRONICS, 2010, 25 (08) :1889-1896
[4]   Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly [J].
Choi, KS ;
McFarland, EW ;
Stucky, GD .
ADVANCED MATERIALS, 2003, 15 (23) :2018-2021
[5]   Massively parallel recording of unit and local field potentials with silicon-based electrodes [J].
Csicsvari, J ;
Henze, DA ;
Jamieson, B ;
Harris, KD ;
Sirota, A ;
Barthó, P ;
Wise, KD ;
Buzsáki, G .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (02) :1314-1323
[6]   Fabrication of microelectrode arrays for neural measurements from retinal tissue [J].
Cunningham, W ;
Mathieson, K ;
McEwan, FA ;
Blue, A ;
McGeachy, R ;
McLeod, JA ;
Morris-Ellis, C ;
O'Shea, V ;
Smith, KM ;
Litke, A ;
Rahman, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (18) :2804-2809
[7]  
Desai Sharanya Arcot, 2010, Front Neuroeng, V3, P5, DOI 10.3389/fneng.2010.00005
[8]   A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays [J].
Egert, U ;
Schlosshauer, B ;
Fennrich, S ;
Nisch, W ;
Fejtl, M ;
Knott, T ;
Muller, T ;
Hammerle, H .
BRAIN RESEARCH PROTOCOLS, 1998, 2 (04) :229-242
[9]   Nanostructured platinum (HI-ePt) films:: Effects of electrodeposition conditions on film properties [J].
Elliott, JM ;
Attard, GS ;
Bartlett, PN ;
Coleman, NRB ;
Merckel, DAS ;
Owen, JR .
CHEMISTRY OF MATERIALS, 1999, 11 (12) :3602-3609
[10]   Electrochemical impedance characterisation of a nanostructured (mesoporous) platinum film [J].
Elliott, JM ;
Owen, JR .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (24) :5653-5659