A nonlinear superposition principle and multibump solutions of periodic Schrodinger equations

被引:112
作者
Ackermann, N [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
关键词
stationary nonlinear Schrodinger equation; multibump solutions; periodic potential;
D O I
10.1016/j.jfa.2005.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an abstract setting we prove a nonlinear superposition principle for zeros of equivariant vector fields that are asymptotically additive in a well-defined sense. This result is used to obtain multibump solutions for two basic types of periodic stationary Schrodinger equations with superlinear nonlinearity. The nonlinear term may be of convolution type. If the superquadratic term in the energy functional is convex, our results also apply in certain cases if 0 is in a gap of the spectrum of the Schrodinger operator. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:277 / 320
页数:44
相关论文
共 45 条
[31]  
Liu ZL, 2005, ANN I H POINCARE-AN, V22, P609, DOI 10.1016/j.anihpc.2004.10.003
[32]   ON THE SHAPE OF LEAST-ENERGY SOLUTIONS TO A SEMILINEAR NEUMANN PROBLEM [J].
NI, WM ;
TAKAGI, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (07) :819-851
[33]  
PANKOV A, 2001, COMMUNICATION
[34]   On a semilinear Schrodinger equation with periodic potential [J].
Pankov, AA ;
Pfluger, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (06) :593-609
[35]   NOTE ON TOPOLOGICAL DEGREE FOR POTENTIAL OPERATORS [J].
RABINOWITZ, PH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 51 (02) :483-492
[36]  
RABINOWITZ PH, 1991, CONT MATH, V198, P307
[37]   EXISTENCE OF INFINITELY MANY HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
SERE, E .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :27-42
[38]  
SPRADLIN GS, 1995, THESIS U WISCONSIN M
[39]  
Stewart J., 1976, ROCKY MOUNTAIN MATH, V6, P409, DOI [DOI 10.1216/RMJ-1976-6-3-409, 10.1216/rmj-1976-6-3-409]
[40]  
STUART CA, 1997, PROGR NONLINEAR DIFF, V27, P397