A nonlinear superposition principle and multibump solutions of periodic Schrodinger equations

被引:112
作者
Ackermann, N [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
关键词
stationary nonlinear Schrodinger equation; multibump solutions; periodic potential;
D O I
10.1016/j.jfa.2005.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an abstract setting we prove a nonlinear superposition principle for zeros of equivariant vector fields that are asymptotically additive in a well-defined sense. This result is used to obtain multibump solutions for two basic types of periodic stationary Schrodinger equations with superlinear nonlinearity. The nonlinear term may be of convolution type. If the superquadratic term in the energy functional is convex, our results also apply in certain cases if 0 is in a gap of the spectrum of the Schrodinger operator. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:277 / 320
页数:44
相关论文
共 45 条
[1]   Multibump solutions of nonlinear periodic Schrodinger equations in a degenerate setting [J].
Ackermann, N ;
Weth, T .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (03) :269-298
[2]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[3]   EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE LINEAR PART [J].
ALAMA, S ;
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :89-115
[4]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[5]   SADDLE POINTS AND MULTIPLE SOLUTIONS OF DIFFERENTIAL-EQUATIONS [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1979, 169 (02) :127-166
[6]   A NOTE ON DEGREE THEORY FOR GRADIENT MAPPINGS [J].
AMANN, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (04) :591-595
[7]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[8]  
Angenent S., 1987, NATO ADV SCI I F, V37, P7
[9]   Homoclinic solutions of an infinite-dimensional Hamiltonian system [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :289-310
[10]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37