A modified Tikhonov regularization for unknown source in space fractional diffusion equation

被引:1
作者
Yu, Kai [1 ]
Gong, Benxue [1 ]
Zhao, Zhenyu [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
关键词
ill-posed problem; super order regularization; unknown source; discrepancy principle; hermite approximation; INVERSE SOURCE PROBLEM; ANOMALOUS DIFFUSION; HERMITE EXPANSION; IDENTIFICATION;
D O I
10.1515/math-2022-0513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the identification of an unknown steady source in a class of fractional diffusion equations. A modified Tikhonov regularization method based on Hermite expansion is presented to deal with the ill-posedness of the problem. By using the properties of Hermitian functions, we construct a modified penalty term for the Tikhonov functional. It can be proved that the method can adaptively achieve the order optimal results when we choose the regularization parameter by the discrepancy principle. Some examples are also provided to verify the effectiveness of the method.
引用
收藏
页码:1309 / 1319
页数:11
相关论文
共 23 条
[1]   The inverse source problem for Maxwell's equations [J].
Albanese, R. ;
Monk, P. B. .
INVERSE PROBLEMS, 2006, 22 (03) :1023-1035
[2]   Identification of planar cracks by complete overdetermined data: Inversion formulae [J].
Andrieux, S ;
BenAbda, A .
INVERSE PROBLEMS, 1996, 12 (05) :553-563
[3]   Structural identification of an unknown source term in a heat equation [J].
Cannon, JR ;
DuChateau, P .
INVERSE PROBLEMS, 1998, 14 (03) :535-551
[4]   Optimal regularization for an unknown source of space-fractional diffusion equation [J].
Dang Duc Trong ;
Dinh Nguyen Duy Hai ;
Nguyen Dang Minh .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 :184-206
[5]   Inverse source problem in nonhomogeneous background media [J].
Devaney, Anthony J. ;
Marengo, Edwin A. ;
Li, Mei .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1353-1378
[6]   Acoustic source identification using multiple frequency information [J].
Eller, Matthias ;
Valdivia, Nicolas P. .
INVERSE PROBLEMS, 2009, 25 (11)
[7]  
Engl H.W., 2000, Regularization of Inverse Problems
[8]   Residual-minimization least-squares method for inverse heat conduction [J].
Frankel, JI .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (04) :117-130
[9]   Determining both sound speed and internal source in thermo- and photo-acoustic tomography [J].
Liu, Hongyu ;
Uhlmann, Gunther .
INVERSE PROBLEMS, 2015, 31 (10)
[10]   The source identification problem in electromagnetic theory [J].
Magnoli, N ;
Viano, GA .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) :2366-2388