Energy conservation in the one-phase supercooled Stefan problem

被引:14
|
作者
Myers, T. G. [1 ,2 ]
Mitchell, S. L. [3 ]
Font, F. [1 ,2 ]
机构
[1] Ctr Recerca Matemat, Barcelona 08193, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, Barcelona, Spain
[3] Univ Limerick, Dept Math & Stat, MACSI, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
Phase change; Stefan problem; Energy conservation; Supercooling; Kinetic undercooling; MODEL;
D O I
10.1016/j.icheatmasstransfer.2012.09.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
A one-phase reduction of the one-dimensional two-phase supercooled Stefan problem is developed. The standard reduction, employed by countless authors, does not conserve energy and a recent energy conserving form is valid in the limit of small ratio of solid to liquid conductivity. The present model assumes this ratio to be large and conserves energy for physically realistic parameter values. Results for three one-phase formulations are compared to the two-phase model for parameter values appropriate to supercooled salol (similar values apply to copper and gold) and water. The present model shows excellent agreement with the full two-phase model. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1522 / 1525
页数:4
相关论文
共 50 条
  • [31] Simulation of the one-phase Stefan problem in a layer of a semitransparent medium
    Rubtsov, N. A.
    Savvinova, N. A.
    Sleptsov, S. D.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2015, 24 (02) : 123 - 138
  • [32] ESTIMATION OF THE CONDUCTIVITY IN THE ONE-PHASE STEFAN PROBLEM - NUMERICAL RESULTS
    KUNISCH, K
    MURPHY, KA
    PEICHL, G
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (05): : 613 - 650
  • [33] Identification of a boundary influx condition in a one-phase Stefan problem
    Ghanmi, Chifaa
    Mani Aouadi, Saloua
    Triki, Faouzi
    APPLICABLE ANALYSIS, 2022, 101 (18) : 6573 - 6595
  • [34] Simulation of the one-phase Stefan problem in a layer of a semitransparent medium
    N. A. Rubtsov
    N. A. Savvinova
    S. D. Sleptsov
    Journal of Engineering Thermophysics, 2015, 24 : 123 - 138
  • [35] ESTIMATION OF THE CONDUCTIVITY IN THE ONE-PHASE STEFAN PROBLEM - BASIC RESULTS
    KUNISCH, K
    MURPHY, KA
    PEICHL, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9B (01): : 77 - 103
  • [36] Spreadsheet simulation of the moving boundary of the one-phase Stefan problem
    Kharab, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 145 (3-4) : 217 - 225
  • [37] ONE-PHASE SPHERICAL STEFAN PROBLEM WITH TEMPERATURE DEPENDENT COEFFICIENTS
    Kharin, S. N.
    Nauryz, T. A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 49 - 56
  • [38] THE SUPERCOOLED STEFAN PROBLEM IN ONE DIMENSION
    Chayes, Lincoln
    Kim, Inwon C.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 845 - 859
  • [39] One-phase inverse stefan problem with an unknown distributed convection coefficient
    N. L. Gol’dman
    Doklady Mathematics, 2014, 90 : 576 - 580
  • [40] OPTIMAL-CONTROL FOR ONE-PHASE STEFAN PROBLEM WITH RANDOM EMISSION
    AIHARA, SI
    ISHIKAWA, M
    APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 20 (03): : 261 - 295