A moment computation algorithm for the error in discrete dynamic hedging

被引:9
作者
Primbs, JA [1 ]
Yamada, Y
机构
[1] Stanford Univ, Terman Engr Ctr 444, Stanford, CA 94305 USA
[2] Univ Tsukuba, Grad Sch Business Sci, Tsukuba, Ibaraki 305, Japan
关键词
dynamic hedging; derivatives; moments; incomplete markets; lattice;
D O I
10.1016/j.jbankfin.2005.04.015
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper develops a computational approach to determining the moments of the distribution of the error in a dynamic hedging or payoff replication strategy under discrete trading. In particular, an algorithm is developed for portfolio affine trading strategies, which lead to portfolio dynamics that are affine in the portfolio variable. This structure can be exploited in the computation of moments of the hedging error of such a strategy, leading to a lattice based backward recursion similar in nature to lattice based pricing techniques, but not requiring the portfolio variable. We use this algorithm to analyze the performance of portfolio affine hedging strategies under discrete trading through the moments of the hedging error. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:519 / 540
页数:22
相关论文
共 21 条
[1]  
[Anonymous], 1992, PROBABILITY
[2]  
AVELLANEDA M, 1995, EXOTIC OPTIONS NOTES
[3]  
BERTSIMAS D, 1997, NATL BUREAU EC RES W, V6250
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]   DISCRETELY ADJUSTED OPTION HEDGES [J].
BOYLE, PP ;
EMANUEL, D .
JOURNAL OF FINANCIAL ECONOMICS, 1980, 8 (03) :259-282
[6]  
Boyle PP., 1994, J DERIV, V1, P6, DOI [10.3905/jod.1994.407891, DOI 10.3905/JOD.1994.407891]
[7]  
COLEMAN T, 2002, DISCRETE HEDGING PIE
[8]  
Duffie D., 1991, Ann. Appl. Probab., V1, P1, DOI DOI 10.1214/AOAP/1177005978
[9]  
GOBET E, FINANCE STOCHASTICS, V5, P357
[10]   A comparison of two quadratic approaches to hedging in incomplete markets [J].
Heath, D ;
Platen, E ;
Schweizer, M .
MATHEMATICAL FINANCE, 2001, 11 (04) :385-413