Matrix Representations of a Special Polynomial Sequence in Arbitrary Dimension

被引:17
作者
Cacao, Isabel [1 ]
Falcao, Maria Irene [2 ]
Malonek, Helmuth R. [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Univ Minho, Dept Math & Applicat, P-4710057 Braga, Portugal
关键词
Special polynomial sequence; monogenic function; matrix representation; EXPONENTIALS; SETS;
D O I
10.1007/BF03321833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows for their recursive construction in the same way as for complex power functions. This property can somehow be considered as a compensation for the loss of multiplicativity caused by the non-commutativity of the underlying algebra.
引用
收藏
页码:371 / 391
页数:21
相关论文
共 29 条
[1]  
Abul-ez M. A, 1990, Complex Variables, Theory Appl, V14, P177
[2]  
Appell P., 1880, Ann. Sci. cole Norm. Sup. (2), V9, P119, DOI DOI 10.24033/ASENS.186
[3]   On a generalized Appell system and monogenic power series [J].
Bock, S. ;
Guerlebeck, K. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (04) :394-411
[4]  
Brackx F., 1982, RES NOTES MATH
[5]  
Caçao I, 2008, AIP CONF PROC, V1048, P647, DOI 10.1063/1.2991009
[6]  
Caçao I, 2011, LECT NOTES COMPUT SC, V6784, P316
[7]  
Caçao I, 2011, LECT NOTES COMPUT SC, V6784, P271
[8]  
Caçao I, 2011, MATH COMPUT MODEL, V53, P1084, DOI 10.1016/j.mcm.2010.11.071
[9]  
Delanghe R., 1992, MATH APPL, V53, p[xvii, 1992]
[10]  
Falcao MI, 2007, AIP CONF PROC, V936, P738