A central limit theorem for self-normalized products of random variables

被引:3
作者
Quine, MP [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
self-normalized product; independent and identically distributed random variables; asymptotic normality;
D O I
10.1016/S0167-7152(98)00243-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give conditions under which the self-normalized product [GRAPHICS] of independent and identically distributed (i.i.d) random variables X-1,X-2,..., where Sigma* denotes the sum over all n-1-long sequences of integers 1 less than or equal to i(1) < i(2) <...< i(n-1) less than or equal to n, is asymptotically normally distributed as n --> infinity. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 1968, INTRO PROBABILITY TH
[2]  
BONDESSON L, 1998, MATH SCI, V23, P95
[3]   METHOD FOR SIMULATING STABLE RANDOM-VARIABLES [J].
CHAMBERS, JM ;
MALLOWS, CL ;
STUCK, BW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) :340-344
[4]  
Gnedenko B.V., 1968, Limit Distributions for Sums of Independent Random Variables
[5]   TABLES AND GRAPHS OF STABLE PROBABILITY DENSITY FUNCTIONS [J].
HOLT, DR ;
CROW, EL .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1973, B-77 (3-4) :143-198
[6]  
Ibragimov IA, 1971, INDEPENDENT STATIONA
[7]   LIMIT DISTRIBUTIONS OF SELF-NORMALIZED SUMS [J].
LOGAN, BF ;
MALLOWS, CL ;
RICE, SO ;
SHEPP, LA .
ANNALS OF PROBABILITY, 1973, 1 (05) :788-809
[8]   A RESULT OF SHEPP [J].
QUINE, MP .
APPLIED MATHEMATICS LETTERS, 1994, 7 (06) :33-34
[9]   PROBLEM 62-9 NORMAL FUNCTIONS OF NORMAL RANDOM VARIABLES [J].
SHEPP, L .
SIAM REVIEW, 1964, 6 (04) :459-&