Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation

被引:74
作者
Li, Limei [1 ]
Xu, Da [2 ]
Luo, Man [2 ]
机构
[1] Hunan Inst Sci & Technol, Dept Math, Yueyang 414000, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional diffusion-wave equation; Alternating direction implicit method; Galerkin finite element method; Crank-Nicolson method; ANOMALOUS DIFFUSION; DIFFERENCE/SPECTRAL APPROXIMATIONS; SPECTRAL METHOD; RANDOM-WALK; SPACE; SCHEME; STABILITY;
D O I
10.1016/j.jcp.2013.08.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New numerical techniques are presented for the solution of the two-dimensional fractional diffusion-wave equation with a time fractional derivative of order alpha (1 < alpha < 2). In these methods, Galerkin finite element is used for the spatial discretization, and, for the time stepping, new alternating direction implicit (ADI) method based on the Crank-Nicolson method are considered. The unconditional stability and L-2 norm convergence of the ADI scheme are proved rigorously. Numerical results are presented to support our theoretical analysis. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 485
页数:15
相关论文
共 44 条
[1]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[4]   A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation [J].
Chen C.-M. ;
Liu F. .
Journal of Applied Mathematics and Computing, 2009, 30 (1-2) :219-236
[5]   Structure of positive decompositions of exponential operators [J].
Chin, SA .
PHYSICAL REVIEW E, 2005, 71 (01)
[6]   ANALYSIS OF SOME GALERKIN SCHEMES FOR SOLUTION OF NONLINEAR TIME-DEPENDENT PROBLEMS [J].
DENDY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) :541-565
[7]   FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION [J].
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :204-226
[8]  
DOUGLAS JJ, 1971, SYNSPADE1970 NUMERIC, P133
[9]   A compact difference scheme for the fractional diffusion-wave equation [J].
Du, R. ;
Cao, W. R. ;
Sun, Z. Z. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) :2998-3007
[10]   AN ALTERNATING DIRECTION GALERKIN METHOD FOR A CLASS OF 2ND-ORDER HYPERBOLIC-EQUATIONS IN 2 SPACE VARIABLES [J].
FERNANDES, RI ;
FAIRWEATHER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) :1265-1281