Two non-zero solutions for Sturm-Liouville equations with mixed boundary conditions

被引:8
作者
D'Agui, Giuseppina [1 ]
Sciammetta, Angela [2 ]
Tornatore, Elisabetta [2 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Boundary value problem; Mixed conditions; Sturm-Liouville equation; Critical points; Variational methods; POSITIVE SOLUTIONS; NEUMANN PROBLEMS; EXISTENCE; THEOREM;
D O I
10.1016/j.nonrwa.2018.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of two non-zero solutions for a mixed boundary value problem with the Sturm-Liouville equation. The approach is based on a recent two critical point theorem. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:324 / 331
页数:8
相关论文
共 21 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] [Anonymous], 1986, CBMS REG C SER MATH
  • [3] Three solutions for a mixed boundary value problem involving the one-dimensional p-Laplacian
    Averna, D
    Salvati, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) : 245 - 260
  • [4] ON A MIXED BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN
    Averna, D.
    Buccellato, S. M.
    Tornatore, E.
    [J]. MATEMATICHE, 2011, 66 (01): : 93 - 104
  • [5] Ordinary (p1, . . . ,pm)-Laplacian systems with mixed boundary value conditions
    Averna, Diego
    Tornatore, Elisabetta
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 28 : 20 - 31
  • [6] Averna D, 2014, ELECTRON J QUAL THEO, P1
  • [7] EXISTENCE OF THREE SOLUTIONS FOR A MIXED BOUNDARY VALUE PROBLEM WITH THE STURM-LIOUVILLE EQUATION
    Averna, Diego
    Giovannelli, Nicolo
    Tornatore, Elisabetta
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (06) : 1213 - 1222
  • [8] A local minimum theorem and critical nonlinearities
    Bonanno, G.
    D'Agui, G.
    O'Regan, D.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (02): : 67 - 86
  • [9] Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities
    Bonanno, Gabriele
    Candito, Pasquale
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) : 3031 - 3059
  • [10] Bonanno G, 2018, J CONVEX ANAL, V25, P421