HPEMed: Heterogeneous Network Pair Embedding for Medical Diagnosis

被引:0
作者
Li, Mengxi [1 ]
Zhang, Jing [1 ]
Chen, Lixia [2 ]
Fu, Yu [1 ]
Zhou, Cangqi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, 200 Xiaolingwei St, Nanjing 210094, Peoples R China
[2] Nanjing Univ Chinese Med, Affiliated Hosp 2, 23 Nanhu Rd, Nanjing 210017, Peoples R China
来源
COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II | 2022年 / 1492卷
基金
中国国家自然科学基金;
关键词
Network embedding; Heterogeneous Information Networks; Representation learning; Electronic Health Record;
D O I
10.1007/978-981-19-4549-6_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Capturing a high-quality representation of clinical events in Electronic Health Record (EHR) is critical for upgrading public medical applications such as intelligent auxiliary diagnosis systems. However, the relationships among clinical events have different semantics and different contributions to disease diagnosis. This paper proposes a novel heterogeneous information network (HIN) based model named HPEMed for disease diagnosis tasks. HPEMed takes advantage of high-dimensional EHR data to model the nodes (with features) and edges of a graph. It exploits meta paths to higher-level semantic relations among EHR data and employs a pair-node embedding scheme that considers patient nodes with rich features and diagnosis nodes together, which achieves a more reasonable clinical event representation. The experimental results show that the performance of HPEMed in diagnosis tasks is better than that of some advanced baseline methods.
引用
收藏
页码:364 / 375
页数:12
相关论文
共 17 条
[11]   DeepWalk: Online Learning of Social Representations [J].
Perozzi, Bryan ;
Al-Rfou, Rami ;
Skiena, Steven .
PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, :701-710
[12]   Scalable and accurate deep learning with electronic health records [J].
Rajkomar, Alvin ;
Oren, Eyal ;
Chen, Kai ;
Dai, Andrew M. ;
Hajaj, Nissan ;
Hardt, Michaela ;
Liu, Peter J. ;
Liu, Xiaobing ;
Marcus, Jake ;
Sun, Mimi ;
Sundberg, Patrik ;
Yee, Hector ;
Zhang, Kun ;
Zhang, Yi ;
Flores, Gerardo ;
Duggan, Gavin E. ;
Irvine, Jamie ;
Quoc Le ;
Litsch, Kurt ;
Mossin, Alexander ;
Tansuwan, Justin ;
Wang, De ;
Wexler, James ;
Wilson, Jimbo ;
Ludwig, Dana ;
Volchenboum, Samuel L. ;
Chou, Katherine ;
Pearson, Michael ;
Madabushi, Srinivasan ;
Shah, Nigam H. ;
Butte, Atul J. ;
Howell, Michael D. ;
Cui, Claire ;
Corrado, Greg S. ;
Dean, Jeffrey .
NPJ DIGITAL MEDICINE, 2018, 1
[13]   Automated Phrase Mining from Massive Text Corpora [J].
Shang, Jingbo ;
Liu, Jialu ;
Jiang, Meng ;
Ren, Xiang ;
Voss, Clare R. ;
Han, Jiawei .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (10) :1825-1837
[14]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[15]   LINE: Large-scale Information Network Embedding [J].
Tang, Jian ;
Qu, Meng ;
Wang, Mingzhe ;
Zhang, Ming ;
Yan, Jun ;
Mei, Qiaozhu .
PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), 2015, :1067-1077
[16]   Word and graph attention networks for semi-supervised classification [J].
Zhang, Jing ;
Li, Mengxi ;
Gao, Kaisheng ;
Meng, Shunmei ;
Zhou, Cangqi .
KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (11) :2841-2859
[17]   Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification [J].
Zhou, Peng ;
Shi, Wei ;
Tian, Jun ;
Qi, Zhenyu ;
Li, Bingchen ;
Hao, Hongwei ;
Xu, Bo .
PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, 2016, :207-212