Nonlinear parabolic problems in Musielak-Orlicz spaces

被引:41
作者
Swierczewska-Gwiazda, Agnieszka [1 ]
机构
[1] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
关键词
Musielak-Orlicz spaces; Modular convergence; Nonlinear parabolic inclusion; Maximal monotone graph; EXISTENCE; EQUATIONS; THEOREM; FLUIDS; FLOWS; OPERATORS; MODEL;
D O I
10.1016/j.na.2013.11.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our studies are directed to the existence of weak solutions to a parabolic problem containing a multi-valued term. The problem is formulated in the language of maximal monotone graphs. We assume that the growth and coercivity conditions of a nonlinear term are prescribed by means of a time and space dependent N-function. This results in the formulation of the problem in generalized Musielak-Orlicz spaces. We are using density arguments, hence an important step of the proof is a uniform boundedness of appropriate convolution operators in Musielak-Orlicz spaces. For this purpose we shall need to assume a kind of logarithmic Holder regularity with respect to t and x. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 65
页数:18
相关论文
共 37 条
[1]  
Alberti G, 1999, MATH Z, V230, P259, DOI 10.1007/PL00004691
[2]   A mathematical model to describe the change in the constitutive character of blood due to platelet activation [J].
Anand, M ;
Rajagopal, KR .
COMPTES RENDUS MECANIQUE, 2002, 330 (08) :557-562
[3]  
[Anonymous], 1990, SYSTEMS CONTROL FDN
[4]  
[Anonymous], 1971, J. Funct. Anal.
[5]   An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (01) :11-24
[6]  
Benkirane A., 2011, COMMENTATIONES MATHEMATICAE, V51, P109
[7]   Mathematical modeling of magnetorheological fluids [J].
Brigadnov, IA ;
Dorfmann, A .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2005, 17 (01) :29-42
[8]  
Bulicek M., 2012, Mathematical Aspects of Fluid Mechanics, P23
[9]   ON UNSTEADY FLOWS OF IMPLICITLY CONSTITUTED INCOMPRESSIBLE FLUIDS [J].
Bulicek, Miroslav ;
Gwiazda, Piotr ;
Malek, Josef ;
Swierczewska-Gwiazda, Agnieszka .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :2756-2801
[10]   On steady flows of incompressible fluids with implicit power-law-like rheology [J].
Bulicek, Miroslav ;
Gwiazda, Piotr ;
Malek, Josef ;
Swierczewska-Gwiazda, Agnieszka .
ADVANCES IN CALCULUS OF VARIATIONS, 2009, 2 (02) :109-136