Well-balanced schemes for the shallow water equations with Coriolis forces

被引:39
作者
Chertock, Alina [1 ]
Dudzinski, Michael [2 ]
Kurganov, Alexander [3 ,4 ]
Lukacova-Medvid'ova, Maria [5 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Helmut Schmidt Univ, Fed Armed Forces Hamburg, Dept Theory Elect Engn, D-22043 Hamburg, Germany
[3] Southern Univ Sci & Technol China, Dept Math, Shenzhen 518055, Peoples R China
[4] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[5] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55099 Mainz, Germany
关键词
CENTRAL-UPWIND SCHEMES; HYPERBOLIC CONSERVATION-LAWS; SAINT-VENANT SYSTEM; VOLUME WENO SCHEMES; GEOSTROPHIC ADJUSTMENT; SOURCE TERMS; WET/DRY FRONTS; FLOWS; ORDER; RECONSTRUCTION;
D O I
10.1007/s00211-017-0928-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we study shallow water equations with bottom topography and Coriolis forces. The latter yield non-local potential operators that need to be taken into account in order to derive a well-balanced numerical scheme. In order to construct a higher order approximation a crucial step is a well-balanced reconstruction which has to be combined with a well-balanced update in time. We implement our newly developed second-order reconstruction in the context of well-balanced central-upwind and finite-volume evolution Galerkin schemes. Theoretical proofs and numerical experiments clearly demonstrate that the resulting finite-volume methods preserve exactly the so-called jets in the rotational frame. For general two-dimensional geostrophic equilibria the well-balanced methods, while not preserving the equilibria exactly, yield better resolution than their non-well-balanced counterparts.
引用
收藏
页码:939 / 973
页数:35
相关论文
共 49 条
[1]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[2]   Preservation of the Discrete Geostrophic Equilibrium in Shallow Water Flows [J].
Audusse, E. ;
Klein, R. ;
Nguyen, D. D. ;
Vater, S. .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 :59-+
[3]   Conservative discretization of Coriolis force in a finite volume framework [J].
Audusse, E. ;
Klein, R. ;
Owinoh, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :2934-2950
[4]   A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations [J].
Bollermann, Andreas ;
Chen, Guoxian ;
Kurganov, Alexander ;
Noelle, Sebastian .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (02) :267-290
[5]  
Botta N, 2004, J COMPUT PHYS, V196, P539, DOI 10.1016/j.icp.2003.11.008
[6]   Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations [J].
Bouchut, F ;
Le Sommer, J ;
Zeitlin, V .
JOURNAL OF FLUID MECHANICS, 2004, 514 :35-63
[7]   WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM [J].
Bryson, Steve ;
Epshteyn, Yekaterina ;
Kurganov, Alexander ;
Petrova, Guergana .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03) :423-446
[8]   FINITE VOLUME SIMULATION OF THE GEOSTROPHIC ADJUSTMENT IN A ROTATING SHALLOW-WATER SYSTEM [J].
Castro, Manuel J. ;
Antonio Lopez, Juan ;
Pares, Carlos .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :444-477
[9]   Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms [J].
Chertock, A. ;
Cui, S. ;
Kurganov, A. ;
Wu, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 78 (06) :355-383
[10]   Three-Layer Approximation of Two-Layer Shallow Water Equations [J].
Chertock, Alina ;
Kurganov, Alexander ;
Qu, Zhuolin ;
Wu, Tong .
MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (05) :675-693