STABILIZATION OF REGULAR SOLUTIONS FOR THE ZAKHAROV-KUZNETSOV EQUATION POSED ON BOUNDED RECTANGLES AND ON A STRIP

被引:16
作者
Doronin, G. G. [1 ]
Larkin, N. A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
ZK equation; stabilization; exponential decay; critical domains; KORTEWEG-DE-VRIES; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; KDV;
D O I
10.1017/S0013091514000248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Initial-boundary-value problems for the two-dimensional Zakharov-Kuznetsov equation posed on bounded rectangles and on a strip are considered. Spectral properties of a linearized operator and critical sizes of domains are studied. An exponential decay rate of regular solutions for the original nonlinear problems is proved.
引用
收藏
页码:661 / 682
页数:22
相关论文
共 37 条
[1]  
[Anonymous], 1985, Appl. Math. Sci.
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]  
[Anonymous], 2007, Mathematical Surveys and Monographs
[4]  
[Anonymous], 2011, ELECTRON J DIFFER EQ
[5]   Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane [J].
Bona, Jerry L. ;
Sun, S. M. ;
Zhang, Bing-Yu .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (06) :1145-1185
[6]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[7]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[8]  
Bourgain J, 1997, INT MATH RES NOTICES, V1997, P437
[9]  
Bubnov B A, 1980, Differential Equations, V16, P24
[10]  
Colin T., 2001, ADV DIFFERENTIAL EQU, V6, P1463