Low-power non-volatile spintronic memory: STT-RAM and beyond

被引:457
作者
Wang, K. L. [1 ]
Alzate, J. G. [1 ]
Amiri, P. Khalili [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
MAGNETIC-ANISOTROPY; ATOMIC LAYERS; SPIN; VOLTAGE; MAGNETORESISTANCE; PROSPECTS;
D O I
10.1088/0022-3727/46/7/074003
中图分类号
O59 [应用物理学];
学科分类号
摘要
The quest for novel low-dissipation devices is one of the most critical for the future of semiconductor technology and nano-systems. The development of a low-power, universal memory will enable a new paradigm of non-volatile computation. Here we consider STT-RAM as one of the emerging candidates for low-power non-volatile memory. We show different configurations for STT memory and demonstrate strategies to optimize key performance parameters such as switching current and energy. The energy and scaling limits of STT-RAM are discussed, leading us to argue that alternative writing mechanisms may be required to achieve ultralow power dissipation, a necessary condition for direct integration with CMOS at the gate level for non-volatile logic purposes. As an example, we discuss the use of the giant spin Hall effect as a possible alternative to induce magnetization reversal in magnetic tunnel junctions using pure spin currents. Further, we concentrate on magnetoelectric effects, where electric fields are used instead of spin-polarized currents to manipulate the nanomagnets, as another candidate solution to address the challenges of energy efficiency and density. The possibility of an electric-field-controlled magnetoelectric RAM as a promising candidate for ultralow-power non-volatile memory is discussed in the light of experimental data demonstrating voltage-induced switching of the magnetization and reorientation of the magnetic easy axis by electric fields in nanomagnets.
引用
收藏
页数:10
相关论文
共 55 条
[1]  
Alzate JG, 2013, IEDM IN PRESS
[2]  
Alzate JG, 2011, 56 C MAGN MAGN MAT S, pEG
[3]  
Amiri Pedram Khalili, 2012, SPIN, V2, DOI 10.1142/S2010324712400024
[4]   Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions [J].
Amiri, P. Khalili ;
Zeng, Z. M. ;
Langer, J. ;
Zhao, H. ;
Rowlands, G. ;
Chen, Y. -J. ;
Krivorotov, I. N. ;
Wang, J. -P. ;
Jiang, H. W. ;
Katine, J. A. ;
Huai, Y. ;
Galatsis, K. ;
Wang, K. L. .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[5]   Low Write-Energy Magnetic Tunnel Junctions for High-Speed Spin-Transfer-Torque MRAM [J].
Amiri, P. Khalili ;
Zeng, Z. M. ;
Upadhyaya, P. ;
Rowlands, G. ;
Zhao, H. ;
Krivorotov, I. N. ;
Wang, J. -P. ;
Jiang, H. W. ;
Katine, J. A. ;
Langer, J. ;
Galatsis, K. ;
Wang, K. L. .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (01) :57-59
[6]  
[Anonymous], 1965, Electronics
[7]  
[Anonymous], 2005, INT TECHNOLOGY ROADM
[8]   Comparison of Scaling of In-Plane and Perpendicular Spin Transfer Switching Technologies by Micromagnetic Simulation [J].
Apalkov, Dmytro ;
Watts, Steven ;
Driskill-Smith, Alexander ;
Chen, Eugene ;
Diao, Zhitao ;
Nikitin, Vladimir .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) :2240-2243
[9]   Fabrication and characterization of MgO-based magnetic tunnel junctions for spin momentum transfer switching [J].
Assefa, Solomon ;
Nowak, J. ;
Sun, J. Z. ;
O'Sullivan, E. ;
Kanakasabapathy, S. ;
Gallagher, W. J. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
[10]   Spin transfer torque switching assisted by thermally induced anisotropy reorientation in perpendicular magnetic tunnel junctions [J].
Bandiera, S. ;
Sousa, R. C. ;
de Castro, M. Marins ;
Ducruet, C. ;
Portemont, C. ;
Auffret, S. ;
Vila, L. ;
Prejbeanu, I. L. ;
Rodmacq, B. ;
Dieny, B. .
APPLIED PHYSICS LETTERS, 2011, 99 (20)