Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers

被引:2
|
作者
Thomas, Abin [1 ]
Vishwakarma, Gajendra K. [1 ]
Bhattacharjee, Atanu [2 ,3 ]
机构
[1] Indian Inst Technol Dhanbad, Dept Math & Comp, Dhanbad 826004, Bihar, India
[2] Tata Mem Hosp, Ctr Canc Epidemiol, Sect Biostat, Mumbai, Maharashtra, India
[3] Homi Bhaba Natl Inst, Mumbai, Maharashtra, India
关键词
Survival modeling; Longitudinal data; Protein expression analysis; JMbayes; CENSORED SURVIVAL-DATA;
D O I
10.1016/j.cam.2020.113016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The methodological advancements in multivariate joint modeling are not substantially utilized in the field of omics analysis. The objective of this study is to provide a brief theoretical background on the modeling and explain the use of this method in real proteomics data. The study uses multivariate joint modeling of longitudinal and time to event data to establish the relationship between longitudinal biomarker measurements and the duration to relapse. Also, it elucidates the use of multivariate joint model fitting and validation along with the applicability of this method on capturing and predicting the disease-free survival duration in the presence of multiple longitudinal biomarkers. The study recommends the use of a multivariate joint model fit to obtain a broader view of the underlying association between multiple biomarkers and relapse duration. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    Journal of Computational and Applied Mathematics, 2021, 381
  • [2] A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data
    Kundu, Damitri
    Krishnan, Shekhar
    Gogoi, Manash Pratim
    Das, Kiranmoy
    LIFETIME DATA ANALYSIS, 2024, 30 (03) : 680 - 699
  • [3] Application of multivariate joint modeling of longitudinal biomarkers and time-to-event data to a rare kidney stone cohort
    Vaughan, Lisa E. E.
    Lieske, John C. C.
    Milliner, Dawn S. S.
    Schulte, Phillip J. J.
    JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE, 2022, 7 (01)
  • [4] Joint Modeling of Longitudinal and Time-to-Event Data
    Jacqmin-Gadda, Helene
    BIOMETRICS, 2018, 74 (01) : 383 - 384
  • [5] Joint analysis of multivariate longitudinal, imaging, and time-to-event data
    Zhou, Xiaoxiao
    Song, Xinyuan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (04) : 921 - 934
  • [6] Joint modeling of longitudinal and time-to-event data: An overview
    Tsiatis, AA
    Davidian, M
    STATISTICA SINICA, 2004, 14 (03) : 809 - 834
  • [7] Bayesian functional joint models for multivariate longitudinal and time-to-event data
    Li, Kan
    Luo, Sheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 14 - 29
  • [8] Editorial "Joint modeling of longitudinal and time-to-event data and beyond"
    Suarez, Carmen Cadarso
    Klein, Nadja
    Kneib, Thomas
    Molenberghs, Geert
    Rizopoulos, Dimitris
    BIOMETRICAL JOURNAL, 2017, 59 (06) : 1101 - 1103
  • [9] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Molei Liu
    Jiehuan Sun
    Jose D. Herazo-Maya
    Naftali Kaminski
    Hongyu Zhao
    Statistics in Biosciences, 2019, 11 : 614 - 629
  • [10] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Liu, Molei
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    STATISTICS IN BIOSCIENCES, 2019, 11 (03) : 614 - 629