Complete Lyapunov functions of control systems

被引:15
作者
Souza, Josiney A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
Morse decomposition; Chain recurrence; Lyapunov function; SEMIFLOWS;
D O I
10.1016/j.sysconle.2011.11.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the notion of complete Lyapunov function of control systems is introduced. The purpose is to determine a continuous real-valued function that describes the global structure of the system. The existence of complete Lyapunov functions is proved for certain classes of affine control systems on compact manifolds. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 50 条
  • [21] Lyapunov functions for nabla discrete fractional order systems
    Wei, Yiheng
    Chen, Yuquan
    Liu, Tianyu
    Wang, Yong
    ISA TRANSACTIONS, 2019, 88 : 82 - 90
  • [22] Lyapunov functions in stability of nonlinear systems on time scales
    Bartosiewicz, Zbigniew
    Piotrowska, Ewa
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (03) : 309 - 325
  • [23] Pade Discretization for Linear Systems With Polyhedral Lyapunov Functions
    Rossi, Francesco
    Colaneri, Patrizio
    Shorten, Robert
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) : 2717 - 2722
  • [24] Lyapunov Functions in Dimension Estimates of Attractors of Dynamical Systems
    G. A. Leonov
    Journal of Mathematical Sciences, 2003, 113 (4) : 614 - 628
  • [25] The method of parametric Lyapunov functions for Markov dynamic systems
    S. M. Dobrovol’skii
    T. M. Strugova
    Journal of Applied and Industrial Mathematics, 2008, 2 (1) : 39 - 45
  • [26] ISOLATED SETS, CATENARY LYAPUNOV FUNCTIONS AND EXPANSIVE SYSTEMS
    Artigue, Alfonso
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (01) : 21 - 50
  • [27] COMPUTATION OF LYAPUNOV FUNCTIONS FOR SYSTEMS WITH MULTIPLE LOCAL ATTRACTORS
    Bjornsson, Johann
    Giesl, Peter
    Hafstein, Sigurdur F.
    Kellett, Christopher M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4019 - 4039
  • [28] Nonanticipating Lyapunov Functions for Persistently Excited Nonlinear Systems
    Verrelli, Cristiano Maria
    Tomei, Patrizio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) : 2634 - 2639
  • [29] On constructing Lyapunov functions for multi-agent systems
    Zhang, Hongwei
    Li, Zhongkui
    Qu, Zhihua
    Lewis, Frank L.
    AUTOMATICA, 2015, 58 : 39 - 42
  • [30] Quantum control based on three forms of Lyapunov functions
    Yu, Guo-Hui
    Yang, Hong-Li
    CHINESE PHYSICS B, 2024, 33 (04)