Axisymmetric multiquadrics

被引:8
作者
Sarler, B
Jelic, N
Kovacevic, I
Lakner, M
Perko, J
机构
[1] Nova Gorica Polytech, Lab Multiphase Proc, Nova Gorica 5000, Slovenia
[2] Univ Innsbruck, Dept Theoret Phys, A-6020 Innsbruck, Austria
[3] Univ Ljubljana, LECAD Grp, SI-1000 Ljubljana, Slovenia
[4] Univ Ljubljana, Fac Civil Engn & Geodesy, SI-1000 Ljubljana, Slovenia
关键词
boundary element method; method of fundamental solutions; collocation method; radial basis functions; dual reciprocity method; multiquadrics; axisymmetry;
D O I
10.1016/j.enganabound.2005.10.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reviews the previous axisymmetric global interpolation functions used in the context of the dual reciprocity boundary element method and dual reciprocity method of fundamental solutions connected to axisymmetric Laplace operator. It complements our axisymmetric thin plate splines [1] with the axisymmetric form of the Hardy's multiquadrics (r(2) + r(0)(2))(m/2); m= +/- 1. This new functions can be used in the improved Golberg-Chen-Karur [2] type of approximations. The basic equations are accompanied by a set of related expressions that permit straightforward use of the developed global interpolation functions in a broad spectrum of dual reciprocity boundary element method and method of fundamental solutions, and meshless direct collocation like discrete approximate procedures. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 24 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
ALIABADI MH, 1995, BE COMM, V6, P229
[3]  
Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[4]   A mesh-free approach to solving the axisymmetric Poisson's equation [J].
Chen, CS ;
Muleshkov, AS ;
Golberg, MA ;
Mattheij, RMM .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (02) :349-367
[5]  
Golberg M. A., 1995, Boundary Elements Communications, V6, P99
[6]  
Golberg M.A., 1994, BOUNDARY ELEMENTS CO, V5, P57
[7]  
Golberg M.A., 1996, BOUNDARY ELEMENTS CO, V7, P155
[8]   Improved multiquadric approximation for partial differential equations [J].
Golberg, MA ;
Chen, CS ;
Karur, SR .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1996, 18 (01) :9-17
[9]   Polynomial particular solutions for certain partial differential operators [J].
Golberg, MA ;
Muleshkov, AS ;
Chen, CS ;
Cheng, AHD .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (01) :112-133
[10]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products