Modified Function Projective Synchronization of two Fractional -order Chaotic Systems with Unknown Parameters

被引:0
作者
Du, Hongyue [1 ,2 ]
机构
[1] Harbin Univ Sci & Technol, Sch Automat, Harbin 150080, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Elect & Automot Engn, Chongqing 400074, Peoples R China
来源
PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC) | 2018年
基金
黑龙江省自然科学基金;
关键词
Modified function projective synchronization; fractional-order; adaptive control; chaotic system; LAG SYNCHRONIZATION; PHASE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of modified function projective synchronization (MIPS) between two fractional-order chaotic systems is investigated in this paper. Based on the stability theory of fractional-order differential system, an active control scheme is designed to achieve modified function projective synchronization for two fractional-order chaotic systems, Then, an adaptive control scheme is designed to achieve modified function projective synchronization for two fractionalorder chaotic systems with unknown parameters, in which unknown parameters can be automatically adapted to suitable constants. Numerical examples are provided to show the effectiveness of proposed methods.
引用
收藏
页码:6575 / 6579
页数:5
相关论文
共 17 条
[1]   Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller [J].
Aghababa, Mohammad Pourmahmood .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2670-2681
[2]   ADAPTIVE OPEN-PLUS-CLOSED-LOOP CONTROL METHOD OF MODIFIED FUNCTION PROJECTIVE SYNCHRONIZATION IN COMPLEX NETWORKS [J].
Du, Hongyue .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (12) :1393-1407
[3]   A general method for modified function projective lag synchronization in chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Lue, Ning .
PHYSICS LETTERS A, 2010, 374 (13-14) :1493-1496
[4]   Modified function projective synchronization of chaotic system [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2399-2404
[5]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659
[6]   Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance [J].
Fu, Guiyuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2602-2608
[7]   Mittag-Leffler stability of fractional order nonlinear dynamic systems [J].
Li, Yan ;
Chen, YangQuan ;
Podlubny, Igor .
AUTOMATICA, 2009, 45 (08) :1965-1969
[8]   Adaptive modified function projective lag synchronization of hyperchaotic complex systems with fully uncertain parameters [J].
Luo Chao ;
Wang Xingyuan .
JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (12) :1831-1845
[9]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[10]   FURTHER RESULTS ON FUNCTIONAL PROJECTIVE SYNCHRONIZATION OF GENESIO-TESI CHAOTIC SYSTEM [J].
Park, Ju H. .
MODERN PHYSICS LETTERS B, 2009, 23 (15) :1889-1895