DOES MULTISPECTRAL / HYPERSPECTRAL PANSHARPENING IMPROVE THE PERFORMANCE OF ANOMALY DETECTION ?

被引:0
作者
Qu, Ying [1 ]
Qi, Hairong [1 ]
Ayhan, Bulent [2 ]
Kwan, Chiman [2 ]
Kidd, Richard [3 ]
机构
[1] Univ Tennessee, EECS Dept, Knoxville, TN 37996 USA
[2] Appl Res LLC, Rockville, MD USA
[3] Jet Prop Lab, Pasadena, CA USA
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Hyperspectral images; multispectral images; pansharpening; anomaly detection; deep learning; RESOLUTION; FUSION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Pansharpening refers to the fusion of a high spatial resolution panchromatic image with high spectral resolution multispectral or hyperspectral images (MSI or HSI) to yield high resolution data in both spectral and spatial domains. It has been widely adopted as a primary preprocessing step for numerous applications. In this paper, we perform a literature survey of various pansharpening algorithms including the most advanced deep learning approaches for both multispectral and hyperspectral images. We further evaluate the effect of the resolution difference on anomaly detection. Synthetic multispectral and hyperspectral images are generated to evaluate the performance of anomaly detection on high resolution images. Eight state-of-the-art MSI and HSI pansharpening methods are compared in this paper. Experimental results show that, performing anomaly detection on high resolution images improves the detection rate, and at the mean time suppresses the false alarm rate.
引用
收藏
页码:6130 / 6133
页数:4
相关论文
共 22 条
  • [1] MTF-tailored multiscale fusion of high-resolution MS and pan imagery
    Aiazzi, B.
    Alparone, L.
    Baronti, S.
    Garzelli, A.
    Selva, M.
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) : 591 - 596
  • [2] An MTF-based spectral distortion minimizing model for pan-sharpening of very high resolution multispectral images of urban areas
    Aiazzi, B
    Alparone, L
    Baronti, S
    Garzelli, A
    Selva, M
    [J]. 2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 90 - 94
  • [3] Borengasser M., 2007, Hyperspectral remote sensing: principles and applications
  • [4] THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE
    BURT, PJ
    ADELSON, EH
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) : 532 - 540
  • [5] Optimal MMSE pan sharpening of very high resolution multispectral images
    Garzelli, Andrea
    Nencini, Filippo
    Capobianco, Luca
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (01): : 228 - 236
  • [6] A New Pan-Sharpening Method With Deep Neural Networks
    Huang, Wei
    Xiao, Liang
    Wei, Zhihui
    Liu, Hongyi
    Tang, Songze
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 1037 - 1041
  • [7] Hyperspectral Super-Resolution by Coupled Spectral Unmixing
    Lanaras, Charis
    Baltsavias, Emmanuel
    Schindler, Konrad
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3586 - 3594
  • [8] Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear PCA band reduction
    Licciardi, Giorgio Antonino
    Khan, Muhammad Murtaza
    Chanussot, Jocelyn
    Montanvert, Annick
    Condat, Laurent
    Jutten, Christian
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
  • [9] Hyperspectral Pansharpening: A Review
    Loncan, Laetitia
    Almeida, Luis B.
    Bioucas-Dias, Jose M.
    Briottet, Xavier
    Chanussot, Jocelyn
    Dobigeon, Nicolas
    Fabre, Sophie
    Liao, Wenzhi
    Licciardi, Giorgio A.
    Simoes, Miguel
    Tourneret, Jean-Yves
    Veganzones, Miguel A.
    Vivone, Gemine
    Wei, Qi
    Yokoya, Naoto
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2015, 3 (03) : 27 - 46
  • [10] Mallat Stephane G, 1989, IEEE TRANSACTIONS ON, V11