Control-Relevant Models for Glucose Control Using A Priori Patient Characteristics

被引:107
作者
van Heusden, Klaske [1 ]
Dassau, Eyal [1 ,2 ]
Zisser, Howard C. [1 ,2 ]
Seborg, Dale E. [1 ]
Doyle, Francis J., III [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[2] Sansum Diabet Res Inst, Santa Barbara, CA 93105 USA
基金
美国国家卫生研究院;
关键词
Artificial pancreas; control-relevant modeling; model predictive control (MPC); type 1 diabetes mellitus (T1DM); BETA-CELL; IDENTIFICATION;
D O I
10.1109/TBME.2011.2176939
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the difficulties in the development of a reliable artificial pancreas for people with type 1 diabetes mellitus (T1DM) is the lack of accurate models of an individual's response to insulin. Most control algorithms proposed to control the glucose level in subjects with T1DM are model-based. Avoiding postprandial hypoglycemia (<60 mg/dl) while minimizing prandial hyperglycemia (>180 mg/dl) has shown to be difficult in a closed-loop setting due to the patient-model mismatch. In this paper, control-relevant models are developed for T1DM, as opposed to models that minimize a prediction error. The parameters of these models are chosen conservatively to minimize the likelihood of hypoglycemia events. To limit the conservatism due to large intersubject variability, the models are personalized using a priori patient characteristics. The models are implemented in a zone model predictive control algorithm. The robustness of these controllers is evaluated in silico, where hypoglycemia is completely avoided even after large meal disturbances. The proposed control approach is simple and the controller can be set up by a physician without the need for control expertise.
引用
收藏
页码:1839 / 1849
页数:11
相关论文
共 37 条
[1]   ARTIFICIAL ENDOCRINE PANCREAS [J].
ALBISSER, AM ;
LEIBEL, BS ;
EWART, TG ;
DAVIDOVAC, Z ;
BOTZ, CK ;
ZINGG, W .
DIABETES, 1974, 23 (05) :389-396
[2]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[3]  
Bequette B Wayne, 2005, Diabetes Technol Ther, V7, P28, DOI 10.1089/dia.2005.7.28
[4]  
Bruttomesso Daniela, 2009, J Diabetes Sci Technol, V3, P1014
[5]  
CLEMENS AH, 1982, CLIN CHEM, V28, P1899
[6]  
Cobelli Claudio, 2009, IEEE Rev Biomed Eng, V2, P54, DOI 10.1109/RBME.2009.2036073
[7]  
Dassau E, 2009, DIABETES, V58, pA105
[8]   A Bihormonal Closed-Loop Artificial Pancreas for Type 1 Diabetes [J].
El-Khatib, Firas H. ;
Russell, Steven J. ;
Nathan, David M. ;
Sutherlin, Robert G. ;
Damiano, Edward R. .
SCIENCE TRANSLATIONAL MEDICINE, 2010, 2 (27) :27ra27
[9]  
Ellingsen Christian, 2009, J Diabetes Sci Technol, V3, P536
[10]   Practical issues in the identification of empirical models from simulated type 1 diabetes data [J].
Finan, Daniel A. ;
Zisser, Howard ;
Jovanovic, Lois ;
Bevier, Wendy C. ;
Seborg, Dale E. .
DIABETES TECHNOLOGY & THERAPEUTICS, 2007, 9 (05) :438-450