CO2 capture with potassium carbonate solutions: A state-of-the-art review

被引:172
|
作者
Borhani, Tohid Nejad Ghaffar [1 ]
Azarpour, Abbas [2 ]
Akbari, Vahid [1 ,3 ]
Alwi, Sharifah Rafidah Wan [1 ]
Manan, Zainuddin Abdul [1 ]
机构
[1] Univ Teknol Malaysia, Proc Syst Engn Ctr PROSPECT, Res Insititute Sustainable Environm, Fac Chem Engn, Utm 81310, Johor Bahru, Malaysia
[2] Univ Teknol Petronas, Dept Chem Engn, Tronoh 31750, Perak, Malaysia
[3] Razi Petrochem Co, Dept Proc Engn, Tehran, Iran
关键词
CO2; capture; Chemical absorption; Experimental studies; Modeling and simulation studies; Potassium carbonate solution; Pilot plant; Review; VAPOR-LIQUID-EQUILIBRIA; GAS-ALKANOLAMINE SYSTEMS; EXCESS GIBBS ENERGY; DIOXIDE ABSORPTION; CHEMICAL-EQUILIBRIUM; AQUEOUS-SOLUTIONS; BICARBONATE SOLUTIONS; ELECTROLYTE-SOLUTIONS; OSMOTIC COEFFICIENTS; REACTIVE ABSORPTION;
D O I
10.1016/j.ijggc.2015.06.026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The potassium carbonate (PC) solution is an important chemical solvent to reduce CO2 emissions due to its advantages of low cost, little toxicity, ease of regeneration, slow corrosiveness, low degradation, and its high stability as well as CO2 absorption capacity. As a result, the PC process has been applied in more than 700 plants worldwide for CO2 and hydrogen sulphide removal from streams like ammonia synthesis gas, crude hydrogen, natural gas, and town gas. This paper provides a state-of-the-art review on the research works on CO2 capture using the PC solution. The studies related to the PC solution comprise three main areas: process, thermodynamics, and kinetics. Important experimental studies as well as modeling and simulation studies are reviewed. Future research directions on CO2 absorption by aqueous PC solution are highlighted and discussed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 162
页数:21
相关论文
共 50 条
  • [1] State-of-the-art of CO2 capture with amino acid salt solutions
    Ramezani, Rouzbeh
    Mazinani, Saeed
    Di Felice, Renzo
    REVIEWS IN CHEMICAL ENGINEERING, 2022, 38 (03) : 273 - 299
  • [2] State-of-the-Art of CO2 Capture with Ionic Liquids
    Ramdin, Mahinder
    de Loos, Theo W.
    Vlugt, Thijs J. H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (24) : 8149 - 8177
  • [3] Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review
    Zhao, Bingtao
    Su, Yaxin
    Tao, Wenwen
    Li, Leilei
    Peng, Yuanchang
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 355 - 371
  • [4] Post-combustion CO2 capture with chemical absorption: A state-of-the-art review
    Wang, M.
    Lawal, A.
    Stephenson, P.
    Sidders, J.
    Ramshaw, C.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (09): : 1609 - 1624
  • [5] State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials
    Ochedi, Friday O.
    Liu, Yangxian
    Adewuyi, Yusuf G.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2020, 139 : 1 - 25
  • [6] Supercritical CO2 Brayton cycle: A state-of-the-art review
    Liu, Yaping
    Wang, Ying
    Huang, Diangui
    ENERGY, 2019, 189
  • [7] Optimization of CO2 capture from flue gas with promoted potassium carbonate solutions
    Behr, P.
    Maun, A.
    Tunnat, A.
    Goerner, K.
    GHGT-11, 2013, 37 : 1554 - 1565
  • [8] High Free Volume Polymeric Membranes for CO2 Capture: State-of-the-art
    Wan R.
    Ma Y.
    Wei J.
    Guo H.
    Fan J.
    Qin Z.
    Dai Z.
    Recent Innovations in Chemical Engineering, 2022, 15 (02) : 86 - 102
  • [9] A State-of-the-Art Update on Integrated CO2 Capture and Electrochemical Conversion Systems
    Gutierrez-Sanchez, Oriol
    Bohlen, Barbara
    Daems, Nick
    Bulut, Metin
    Pant, Deepak
    Breugelmans, Tom
    CHEMELECTROCHEM, 2022, 9 (05)
  • [10] Dry hydrated potassium carbonate for effective CO2 capture
    Wang, Suying
    Liu, Zhengwen
    Smith, Andrew T.
    Zeng, Yanxian
    Sun, Luyi
    Wang, Weixing
    DALTON TRANSACTIONS, 2020, 49 (13) : 3965 - 3969